A gráfico de Pareto mostra os valores absolutos dos efeitos padronizados desde o maior efeito até o menor efeito. Os efeitos padronizados são estatísticas t que testam a hipótese nula de que o efeito é 0. O gráfico também traça uma linha de referência para indicar quais efeitos são estatisticamente significativos.
A linha de referência para significância estatística depende do nível de significância (denotado por α ou alfa). A menos que você use um método de seleção stepwise que defina um valor alfa, o nível de significância é 1 menos o nível de confiança para a análise. Para obter mais informações sobre como alterar o nível de confiança, acesse Especificar as opções para Análise de experimento de superfície de resposta. Se você usar a seleção regressiva ou a seleção stepwise, o nível de significância é aquele em que o Minitab remove um termo do modelo, conhecido como Alfa para remoção. Se você usa a seleção progressiva, o nível de significância é aquele em que o Minitab adiciona um termo ao modelo, conhecido como Alfa para entrada.
Use o gráfico de Pareto para determinar a magnitude e a importância dos efeitos. No gráfico de Pareto, as barras que se cruzam a linha de referência são estatisticamente significativas. Por exemplo, neste gráfico de Pareto, as barras que representam os fatores C, B e BC cruzam a linha de referência que está em 2,31. Estes fatores são estatisticamente significativos ao nível 0,05 com os termos do modelo atual.
Como o gráfico Pareto exibe o valor absoluto dos efeitos, é possível determinar quais efeitos são grandes, mas não é possível determinar quais efeitos aumentam ou diminuem a resposta. Use o gráfico de probabilidade normal dos efeitos padronizados para examinar a magnitude e a direção dos efeitos de um gráfico.Use o gráfico de probabilidade normal dos efeitos padronizados para examinar a magnitude e a direção dos efeitos de um gráfico.
O gráfico de probabilidade normal dos efeitos mostra os efeitos padronizados em relação a uma linha de ajuste de distribuição no caso em que todos os efeitos são 0. Os efeitos padronizados são estatísticas t que testam a hipótese nula de que o efeito é 0. Os efeitos positivos aumentam a resposta quando as definições mudam do valor baixo do fator para o valor alto. Os efeitos negativos diminuem a resposta quando as definições mudam do valor baixo do fator para o valor alto do fator. Efeitos mais afastados de 0 que estão no eixo x têm maior magnitude. Efeitos mais afastados de 0 são estatisticamente mais significativos.
Para que os sejam estatisticamente significativos, a distância que eles devem estar em relação a zero dependerá do nível de significância (denotado por α ou alfa). A menos que você use um método de seleção stepwise que defina um valor alfa, o nível de significância é 1 menos o nível de confiança para a análise. Para obter mais informações sobre como alterar o nível de confiança, acesse Especificar as opções para Análise de experimento de superfície de resposta. Se você usar a seleção regressiva ou a seleção stepwise, o nível de significância é aquele em que o Minitab remove um termo do modelo, conhecido como Alfa para remoção. Se você usar a seleção progressiva, o nível de significância é aquele em que o Minitab adiciona um termo ao modelo, conhecido como Alfa para entrada.
Use o gráfico de probabilidade normal dos efeitos para determinar a magnitude, direção e a importância dos efeitos. No gráfico de probabilidade normal dos efeitos, os efeitos que estão mais afastados de 0 são estatisticamente significativos. A cor e a forma dos pontos difere entre os efeitos estatisticamente significativos e estatisticamente não significativos. Por exemplo, neste gráfico, os efeitos principais dos fatores A, B e C são estatisticamente significativos ao nível 0,05. Estes pontos têm cor e forma diferentes dos pontos para os efeitos não significativos.
Além disso, o gráfico indica a direção do efeito. O processo (A) tem um efeito padronizado positivo. Quando o processo muda de nível baixo para nível alto do fator, a resposta aumenta. Pressão (B) e Velocidade (C) têm efeitos padronizados negativos. Quando a Pressão e a Velocidade aumentam, a resposta diminui.
Como o gráfico de probabilidade normal dos efeitos exibe efeitos negativos sobre o lado esquerdo do gráfico e efeitos positivos sobre o lado direito do gráfico, é mais difícil fazer comparações sobre os quais os efeitos alteram mais a resposta do que nos gráficos que mostram os valores absolutos dos efeitos padronizados. O gráfico half normal e o gráfico de Pareto mostram os valores absolutos dos efeitos padronizados.
A gráfico de probabilidade half normal dos efeitos mostra os valores absolutos dos efeitos padronizados desde o maior efeito até o menor efeito. Os efeitos padronizados são estatísticas t que testam a hipótese nula de que o efeito é 0. Os pontos são apresentados em relação a uma linha de ajuste de distribuição para o caso em que todos os efeitos são 0. Efeitos mais afastados de 0 que estão no eixo x têm maior magnitude. Efeitos mais afastados de 0 são estatisticamente mais significativos.
Para que os sejam estatisticamente significativos, a distância que eles devem estar em relação a zero dependerá do nível de significância (denotado por α ou alfa). A menos que você use um método de seleção stepwise que defina um valor alfa, o nível de significância é 1 menos o nível de confiança para a análise. Para obter mais informações sobre como alterar o nível de confiança, acesse Especificar as opções para Análise de experimento de superfície de resposta. Se você usar a seleção regressiva ou a seleção stepwise, o nível de significância é aquele em que o Minitab remove um termo do modelo, conhecido como Alfa para remoção. Se você usar a seleção progressiva, o nível de significância é aquele em que o Minitab adiciona um termo ao modelo, conhecido como Alfa para entrada.
Use o gráfico de probabilidade half normal dos efeitos para determinar a magnitude e a importância dos efeitos. No gráfico de probabilidade half normal dos efeitos, os efeitos que estão mais afastados de 0 são estatisticamente significativos. A cor e a forma dos pontos difere entre os efeitos estatisticamente significativos e estatisticamente não significativos. Por exemplo, neste gráfico, os efeitos principais dos fatores A, B e C são estatisticamente significativos ao nível 0,05. Estes pontos têm cor e forma diferentes dos pontos para os efeitos não significativos. Além disso, o Minitab coloca rótulos nos pontos estatisticamente significativos.
Como o gráfico de probabilidade half normal dos efeitos exibe o valor absoluto dos efeitos, é possível determinar quais efeitos são grandes, mas não é possível determinar quais efeitos aumentam ou diminuem a resposta. Use o gráfico de probabilidade normal dos efeitos padronizados para verificar a magnitude e a direção dos efeitos de um gráfico.