O que é um outlier?

Um outlier é uma observação atipicamente grande ou pequeno. Outliers podem ter um efeito desproporcional sobre os resultados estatísticos, como a média, o que pode resultar em interpretações equivocadas. Por exemplo, um conjunto de dados inclui os valores: 1, 2, 3, e 34. O valor médio, 10, que é maior do que a maioria dos dados (1, 2, 3), é muito afetado pelo ponto de dados extremo , 34. Neste caso, o valor médio faz parecer que os valores de dados são mais elevados do que realmente são. Você deve investigar outliers porque eles podem fornecer informações úteis sobre os seus dados ou processo. Muitas vezes, é mais fácil de identificar outliers representando-se graficamente os dados.

Testes para valores discrepantes

O Minitab fornece o teste de Grubb e os testes de Dixon que podem identificar um único outlier em uma amostra. Para executar um desses testes discrepantes, escolha Estat > Estatísticas Básicas > Teste de outlier. Para obter mais informações, acesse Visão geral de Teste de outlier.

Uso de gráficos para identificar outliers

Em boxplots, o Minitab usa um símbolo de asterisco (*) para identificar outliers. Estes outliers são observações que são pelo menos 1,5 vezes o intervalo interquartil (Q3 - Q1) a partir da borda da caixa.

Em boxplots, o Minitab usa um asterisco (*) para identificar outliers.

Em gráficos de dispersão, pontos que estão muito longe de outros são possíveis outliers.

Este gráfico de dispersão mostra um possível outlier.

Em alguns casos, você deve examinar mais de um tipo de gráfico porque os outliers que aparecem em um gráfico podem não ser óbvio em um gráfico diferente. O histograma e boxplot utilizam os mesmos dados. O outlier é óbvio no boxplot, mas não tão óbvio no histograma.

Causas típicas de outliers

São causas típicas de outliers:
Causa Ações possíveis
Erro na entrada de dados Corrija o erro e analise os dados novamente.
Problema no processo Investigue o processo para determinar a causa do outlier.
Fator faltante Determine se você deixou de considerar um fator que afeta o processo.
Ocorrência aleatória Investigue o processo e o outlier para determinar se o outlier ocorreu por acaso; faça a análise com e sem o outlier para ver seu impacto sobre os resultados.