Interpretar todas as estatísticas e gráficos para Poder e tamanho de amostra para teste Z para 1 amostra

Encontre definições e orientações interpretação para cada estatística e gráfico fornecido com Poder e tamanho de amostra para teste Z para 1 amostra.

α (alfa)

O nível de significância (indicado como α ou alfa) é o nível máximo aceitável de risco para rejeitar a hipótese nula quando ela é verdadeira (erro tipo I). Alfa também é interpretado como o poder do teste quando a hipótese nula (H0) for verdadeira. Em geral, você escolhe o nível de significância antes de analisar os dados. Por padrão, o nível de significância é 0,25.

Interpretação

Use o nível de significância para minimizar o valor do poder do teste quando a hipótese nula (H0) for verdadeira. Os valores mais elevados para o nível de significância dão mais poder ao teste, mas também aumentar a chance cometer um erro do tipo I, que está rejeitando a hipótese nula quando ela é verdadeira.

Desvio padrão suposto

O desvio padrão é a medida mais comum da dispersão, ou quanto os dados variam em relação à média. A variação que é aleatória ou natural de um processo é frequentemente referida como ruído.

Interpretação

O desvio padrão suposto é um planejamento estimado do desvio padrão da população que você insere para a análise de poder. O Minitab utiliza o desvio padrão suposto a calcular o poder do teste. Os valores mais elevados do desvio padrão indicam que existe mais variação nos dados, o que diminui o poder estatístico de um teste.

Diferença

Este valor representa a diferença entre a média da população real e a média hipotética.

Interpretação

O Minitab calcula a diferença mínima para a qual é possível alcançar o nível especificado de poder para cada tamanho amostral. Amostras maiores permitem que o teste para detecte diferenças menores. Você deseja detectar a menor diferença que tenha consequências práticas para sua aplicação.

Para investigar melhor a relação entre o tamanho amostral e a diferença um determinado poder, use a curva de poder.

Tamanho amostral

O tamanho amostral é o número total de observações na amostra.

Interpretação

Use o tamanho amostral para estimar quantas observações que você precisa para obter um certo valor de poder para um teste de hipótese com uma diferença específica.

O Minitab calcula o tamanho que sua amostra deve ter para que um teste com o seu poder especificado detecte cada diferença especificada. Como os tamanhos amostrais são números inteiros, o poder real do teste pode ser um pouco maior do que o valor de poder que você especificar.

Se você aumentar o tamanho amostral, o poder do teste também aumentará. Você quer observações suficientes na sua amostra para alcançar o poder adequado. Porém, você não quer um tamanho amostral tão grande a ponto de perder tempo e dinheiro em amostragens desnecessárias ou detectar diferenças sem importância para serem estatisticamente significativas.

Para investigar melhor a relação entre o tamanho amostral e a diferença um determinado poder, use a curva de poder.

Poder

O poder de um teste de hipótese é a probabilidade de que o teste rejeite corretamente a hipótese nula. O poder de um teste de hipótese é afetado pelo tamanho amostral, a diferença, a variabilidade dos dados e o nível de significância do teste.

Para obter mais informações, vá para O que é potência?.

Interpretação

O Minitab calcula o poder do teste com base na diferença e tamanho amostral especificado. Em geral, um valor de poder de 0,9 é considerado adequado. Um valor de 0,9 indica que você tem uma probabilidade de 90% de detectar uma diferença entre a média da população e o alvo quando uma diferença realmente existe. Se um teste apresenta baixo poder, talvez não seja possível detectar a diferença e você conclua erroneamente que não existe nenhuma. Normalmente, quando o tamanho amostral é menor ou a diferença é menor, o teste tem menos poder para detectar uma diferença.

Se você inserir a diferença e um valor de poder para o teste, o Minitab calcula o tamanho que sua amostra deve ter. O Minitab também calcula o poder real do teste para aquele tamanho da amostral. Como os tamanhos amostrais são números inteiros, o poder real do teste pode ser um pouco maior do que o valor de poder que você especificar.

Curva de poder

A curva de poder representa graficamente o poder do teste versus a diferença entre a média de teste e a média de referência e o alvo.

Interpretação

Use a curva de poder para avaliar o tamanho amostral ou o poder adequado para o seu teste.

A curva de poder representa todas as combinações de poder e diferença para cada tamanho amostral, quando o nível de significância e o desvio padrão são mantidos constantes. Cada símbolo na curva da poder representa um valor calculado com base nos valores inseridos. Por exemplo, se você inserir um tamanho amostral e um valor de poder, o Minitab calcula a diferença correspondente e exibe o valor calculado no gráfico.

Examine os valores na curva para determinar a diferença entre a média e o alvo que pode ser detectada a um determinado valor de poder e tamanho amostral. Um valor de poder de 0,9 geralmente é considerado adequado. No entanto, alguns profissionais consideram um valor de poder de 0,8 como adequado. Se um teste de hipóteses tiver baixo poder, talvez não seja possível detectar uma diferença praticamente significativa. Se você aumentar o tamanho amostral, o poder do teste também aumentará. Você quer observações suficientes na sua amostra para alcançar o poder adequado. Porém, você não quer um tamanho amostral tão grande a ponto de perder tempo e dinheiro em amostragens desnecessárias ou detectar diferenças sem importância para serem estatisticamente significativas. Se você diminuir o tamanho da diferença que deseja detectar, o poder também diminuirá.

Neste gráfico, a curva de poder para um tamanho amostral de 32 mostra que o teste tem poder de 0,9 para uma diferença de 1,5. Conforme a diferença se aproxima de 0, o poder do teste diminui e se aproxima de α (também chamado o nível de significância), que é de 0,05 para esta análise.

Ao usar esse site, você concorda com a utilização de cookies para análises e conteúdo personalizado.  Leia nossa política