Como a assimetria e a curtose afetam sua distribuição

Use a assimetria e a curtose para ajudar a estabelecer uma compreensão inicial dos seus dados.

Assimetria

A assimetria é a medida em que os dados não são simétricos. Valores de assimetria iguais a zero, positivos ou negativos revalem informações sobre a forma dos dados.
Figura A
Figura B
Distribuições simétricas ou não assimétricas

Conforme os dados tornam-se simétricos, seu valor de assimetria aproxima-se de zero. A Figura A mostra dados de distribuição normal, que por definição exibe assimetria relativamente pequena. Ao traçar uma linha abaixo do meio deste histograma de dados normais é fácil de ver que os dois lados refletem um ao outro. Mas a falta de assimetria simplesmente não significa normalidade. A Figura B mostra uma distribuição onde os dois lados ainda refletem um ao outro, apesar de os dados estarem longe de serem uma distribuição normal.

Distribuições com assimetria positiva ou à direita

Dados com assimetria positiva ou à direita são assim chamados por causa da "cauda" dos pontos de distribuição à direita, e porque seu valor de assimetria será maior do que 0 (ou positiva). Dados salariais são, frequentemente, assimétricos desta maneira: vários funcionários em uma empresa ganham relativamente pouco, enquanto cada vez menos pessoas ganham altos salários.

Distribuições com assimetria negativa ou à esquerda

Assimetria à esquerda ou dados assimétricos negativos são assim chamados porque a "cauda" da distribuição aponta para a esquerda, e porque ela produz um valor de assimetria negativo. Os dados da taxa de falha são frequentemente assimétricos à esquerda. Considere as lâmpadas: muito poucas vão queimar imediatamente, a grande maioria durará por um longo tempo.

Curtose

A curtose indica como o pico e as caudas de uma distribuição diferem da distribuição normal. Use curtose para ajudar você a entender inicialmente as características gerais sobre a distribuição de seus dados.
Linha de base: valor da curtose de 0

Os dados que seguem uma distribuição normal perfeitamente têm um valor de 0. Normalmente, os dados distribuídos estabelecem a linha de base para curtose. A curtose da amostra que se desvia significativamente de 0 pode indicar que os dados não estão normalmente distribuídos.

Curtose positiva

Uma distribuição com um valor de curtose positiva indica que a distribuição tem caudas mais pesadas e um pico mais pontudo do que a distribuição normal. Por exemplo, os dados que se seguem a distribuição T tem um valor de curtose positiva. A linha contínua mostra a distribuição normal e a linha pontilhada mostra uma distribuição com um valor de curtose positiva.

Curtose negativa

Uma distribuição com um valor de curtose negativa indica que a distribuição tem caudas mais leves e menos e um pico mais achatado do que a distribuição normal. Por exemplo, os dados que seguem uma distribuição beta com primeiro e segundo parâmetros de forma igual a 2 têm um valor de curtose negativo. A linha contínua mostra a distribuição normal e a linha pontilhada mostra uma distribuição com um valor de curtose negativa.

Ao usar esse site, você concorda com a utilização de cookies para análises e conteúdo personalizado.  Leia nossa política