Gráficos de resíduos para Estudo de estabilidade

Encontre definições e orientação de interpretação para cada gráfico de resíduo.

Histograma de resíduos

O histograma dos resíduos mostra a distribuição dos resíduos para todas as observações.

Interpretação

Use o histograma dos resíduos para determinar se os dados são assimétricos ou se incluem outliers. Os padrões na tabela a seguir podem indicar que o modelo não atende aos pressupostos do modelo.
Padrão O que o padrão pode indicar
Uma cauda longa em uma direção Assimetria
Um bar que está distante das outras barras Um outlier

Como a aparência de um histograma depende do número de intervalos utilizados para agrupar os dados, não use um histograma para avaliar a normalidade dos resíduos. Em vez disso, use um gráfico de probabilidade normal.

Um histograma é mais eficaz quando você tem aproximadamente 20 pontos de dados ou mais. Se a amostra for pequena demais, cada barra no histograma não conterá pontos de dados suficientes para mostrar de forma confiável a assimetria ou os outliers.

Gráficos de probabilidade normal de resíduos

Um gráfico de probabilidade normal dos resíduos mostra os resíduos versus seus valores esperados quando a distribuição é normal.

Observação

Se o fator de lote for aleatório, use os resíduos condicionais para avaliar a normalidade.

Interpretação

Use o gráfico de probabilidade normal de resíduos para verificar a pressuposição de que os resíduos são distribuídos normalmente. O gráfico de probabilidade normal dos resíduos deve seguir aproximadamente uma linha reta.

Os seguintes padrões violam o pressuposto de que os resíduos são normalmente distribuídos.

A curva S sugere uma distribuição com caudas longas.

A curva S invertida sugere uma distribuição com caudas curtas.

A curva descendente implica uma distribuição assimétrica à direita.

Alguns pontos situados longe da linha sugerem uma distribuição com outliers.

Se você vir um padrão não normal, use os outros gráficos de resíduo para verificar outros problemas com o modelo, como uma variância não constante ou um efeito de ordem de tempo. Se os resíduos não seguirem uma distribuição normal e os dados tiverem menos que 15 observações, então os intervalos de confiança para preditoras, intervalos de confiança para coeficientes e os valores-p para coeficientes podem ser inexatos.

Resíduos versus ajustes

Os gráficos a seguir mostram um outlier e uma violação do pressuposto de que a variância dos resíduos é constante.
Gráfico com outlier

Um dos pontos é muito maior do que todos os outros pontos. Portanto, a questão é um outlier. Se houver muitos outliers, o modelo pode não ser aceitável. Você deve tentar identificar a causa de todos os outliers. Corrija os erros de entrada de dados ou de medição. Considere a remoção de valores de dados que estejam associados a eventos anormais que ocorrem somente uma vez (causas especiais). Em seguida, repita a análise.

Gráfico com variância não constante

A variância dos resíduos aumenta com os valores ajustados. Observe que, como o valor dos ajustes aumenta, a dispersão entre os resíduos se torna mais ampla. Este padrão indica que as variâncias dos resíduos são desiguais (não constante).

Se você identificar quaisquer padrões ou outliers no gráfico de resíduos versus o gráfico de ajustes, considere as seguintes soluções:

Problema Solução possível
Variância não constante Considere usar uma transformação de Box-Cox. Para obter mais informações, vá para Realizar a transformação de Box-Cox para Estudo de estabilidade.
Um outlier ou ponto influente
  1. Verifique se a observação não é um erro de medição ou erro de entrada de dados.
  2. Considere fazer a análise sem esta observação para determinar como ela impacta seus resultados.

Resíduos versus ordem

O gráfico de resíduos versus ordem mostra os resíduos na ordem em que os dados foram coletados.

Interpretação

Use o gráfico de resíduos versus ordem para verificar o pressuposto de que os resíduos são independentes um do outro. Resíduos independentes não mostram tendências nem padrões quando exibidos em ordem temporal. Os padrões nos pontos podem indicar que os resíduos próximos uns dos outros podem ser correlacionados e, portanto, não são independentes. De maneira ideal, os resíduos no gráfico devem cair aleatoriamente em torno da linha central:
Se você vir um padrão, investigue a causa. Os seguintes tipos de padrões podem indicar que os resíduos são dependentes.
Tendência
Deslocamento
Ciclo

Resíduos versus variáveis

O gráfico de resíduos versus variáveis apresenta os resíduos comparados com outras variáveis. A variável já pode estar incluída em seu modelo. Ou, a variável pode não estar no modelo, mas você suspeita que afeta a resposta.

Interpretação

Se você observar um padrão não aleatória nos resíduos, isso indica que a variável afeta a resposta de uma forma sistemática. Considere a inclusão desta variável em uma análise.

Ao usar esse site, você concorda com a utilização de cookies para análises e conteúdo personalizado.  Leia nossa política