Tabela Análise de Variância para Análise de Experimento Taguchi

Encontre definições e orientações de interpretação para cada estatística na tabela de Análise de Variância.

DF

Os graus de liberdade (DF) totais são a quantidade de informações em seus dados. A análise usa essas informações para estimar os valores dos parâmetros da população desconhecidos. Os DF totais são determinados pelo número de observações em seu experimento. Os DF de um termo mostram quanta informação aquele termo usa. Aumentar o tamanho amostral fornece mais informações sobre a população, o que aumenta os DF totais. Aumentar o número de termos em seu modelo usa mais informações, o que diminui os DF disponíveis para estimar a variabilidade das estimativas de parâmetros.

Seq SS

As somas dos quadrados sequenciais são medidas da variação para os diferentes componentes do modelo. Diferente das somas dos quadrados ajustados, a soma sequencial dos quadrados depende da ordem em que os termos são inseridos no modelo. Na tabela Análise da Variância, o Minitab lista somas dos quadrados sequenciais para os efeitos principais, as interações e o termo de erro.

Termo SS seq
A soma dos quadrados sequenciais para um termo é a parte única da variação explicada por um termo que não é explicado pelos termos digitados anteriormente. Ele quantifica o montante de variação nos dados de resposta que é explicado por cada termo conforme ele é adicionado sequencialmente ao modelo.
Erro de SS seq
A soma dos quadrados dos erros é a soma dos quadrados dos resíduos. Ela quantifica a variação nos dados que os preditores não explicam.
Total Seq SS
A soma dos quadrados total é a soma do termo da soma dos quadrados e o erro da soma dos quadrados. Ela quantifica a variação total nos dados.

Interpretação

O Minitab usa a soma dos quadrados ajustadas para calcular o valor-p para um termo. O Minitab também usa a soma dos quadrados para calcular a estatística R2. Normalmente, você interpreta os valores-p e a estatística R2 em vez da soma dos quadrados.
Observação

Em um experimento ortogonal, a soma dos quadrados sequenciais é a mesma que a soma dos quadrados ajustados.

Adj SS

A soma dos quadrados ajustada é uma medida da variação para os diferentes componentes do modelo. A ordem dos preditores do modelo não afeta o cálculo da soma dos quadrados ajustada. Na tabela de análise de variância, o Minitab separa as somas dos quadrados em diferentes componentes que descrevem a variação devida a várias fontes.

Termo de Adj SS
A soma dos quadrados ajustada para um termo é a diminuição na soma dos quadrados do erro em comparada a um modelo com apenas os outros termos. Ele quantifica o montante de variação nos dados de resposta que é explicado por cada termo no modelo.
Termo SS ajust
A soma dos quadrados ajustada para um termo é o aumento na soma dos quadrados de regressão em relação a um modelo com apenas os outros termos. Ele quantifica o montante de variação nos dados de resposta que é explicado por cada termo no modelo.
Erro de SS ajust
A soma dos quadrados dos erros é a soma dos quadrados dos resíduos. Ela quantifica a variação nos dados que os preditores não explicam.
Total de SS Adj
A soma dos quadrados total é a soma do termo da soma dos quadrados para um experimento ortogonal e o erro da soma dos quadrados. Ela quantifica a variação total nos dados.

Interpretação

O Minitab usa a soma dos quadrados ajustada para calcular o valor-p para um termo. O Minitab também usa a soma dos quadrados para calcular a estatística R2. Normalmente, você interpreta os valores-p e a estatística R2 em vez da soma dos quadrados.

Adj MS

Os quadrados médios ajustados medem o quanto a variação de um termo ou um modelo explica, assumindo que todos os outros termos estão no modelo, independentemente da ordem em que foram inseridos. Diferentemente das somas dos quadrados ajustadas, os quadrados médios ajustados considerar os graus de liberdade.

O quadrado médio do erro ajustado (também chamado MSE ou s2) é a variância em torno dos valores ajustados.

Interpretação

O Minitab usa os quadrados médios ajustados para calcular o valor de p para um termo. O Minitab também usa os quadrados médios ajustados para calcular a estatística R2 ajustada. Normalmente, você interpreta os valores de p e a estatística R2 ajustada em vez dos quadrados médios ajustados.

Valor-f

A tabela Análise de Variância lista um valor-f para cada termo. O valor-f é a estatística de teste usado para determinar se o termo está associado com a resposta.

Interpretação

O Minitab usa o valor-f para calcular o valor-p, que pode ser usado para a tomada de uma decisão sobre a significância estatística dos termos. O valor-p é uma probabilidade que mede a evidência contra a hipótese nula. As probabilidades inferiores fornecem evidências mais fortes contra a hipótese nula.

Um valor de F grande o bastante indica que o termo ou modelo é significativo.

Se você quiser usar o valor-f para determinar se deve rejeitar a hipótese nula, compare o valor-f com o seu valor crítico. É possível calcular o valor crítico no Minitab ou encontrar o valor crítico de uma tabela distribuição F na maioria dos livros de estatísticas. Para obter mais informações sobre como usar o Minitab para calcular o valor crítico, acesse Usando a função de distribuição acumulada inversa (ICDF) e clique em "Use o ICDF para calcular valores críticos".

Valor-p

O valor-p é uma probabilidade que mede a evidência contra a hipótese nula. As probabilidades inferiores fornecem evidências mais fortes contra a hipótese nula.

Interpretação

Para determinar se a associação entre a resposta e cada termo no modelo é estatisticamente significativa, compare o valor-p para o termo com o seu nível de significância a fim de avaliar a hipótese nula. A hipótese nula é que não há nenhuma associação entre o termo e a resposta.

Geralmente, um nível de significância (denotado como α ou alfa) de 0,05 funciona bem. Um nível de significância de 0,05 indica um risco de 5% de se concluir que o coeficiente não é 0 quando, na verdade, ele é. Por vezes, utiliza-se um nível de significância de 0,10 para a avaliação de termos em um modelo.
Valor-p ≤ α: a associação é estatisticamente significativa
Se o valor-p for menor ou igual ao nível de significância, é possível concluir que há uma associação estatisticamente significativa entre a resposta característica e o termo.
Valor-p > α: a associação não é estatisticamente significativa
Se o valor-p for maior ou igual ao nível de significância, não é possível concluir que há uma associação estatisticamente significativa entre a resposta característica e o termo. Talvez seja necessário reajustar o modelo sem o termo.
Se houver vários preditores sem uma associação estatisticamente significativa com a resposta, você pode reduzir o modelo removendo os termos um de cada vez. Para obter mais informações sobre como remover os termos do modelo, vá para Redução de modelo.
Ao usar esse site, você concorda com a utilização de cookies para análises e conteúdo personalizado.  Leia nossa política