표본 크기(N)는 표본의 총 관측치 수입니다.
표본 크기는 신뢰 구간 및 검정의 검정력에 영향을 미칩니다.
일반적으로 표본 크기가 클수록 신뢰 구간이 좁아집니다. 또한 표본 크기가 클수록 차이를 탐지하기 위한 검정력이 더 높습니다. 자세한 내용은 검정력의 정의에서 확인하십시오.
중위수는 데이터 집합의 중간점입니다. 중간점 값은 관측치의 반이 이 값보다 크고 관측치의 반이 이 값보다 작은 점입니다. 중위수는 관측치에 순위를 매기고 순위가 [N + 1] / 2인 관측치를 찾는 방법으로 결정됩니다. 관측치의 수가 짝수이면 순위가 N / 2인 관측치와 순위가 [N / 2] + 1인 관측치의 평균 값이 중위수입니다.
각 표본의 중위수는 각 표본의 모집단 중위수 추정치입니다.
차이는 두 표본의 중위수 간의 차이입니다.
차이는 전체 모집단이 아니라 표본 데이터를 기반으로 하기 때문에 표본 차이가 모집단 차이와 같을 가능성은 없습니다. 모집단 차이를 더 잘 추정하려면 신뢰 구간을 사용하십시오.
신뢰 구간은 모집단 차이가 될 수 있는 값의 범위를 제공합니다. 표본이 랜덤이기 때문에 모집단의 두 표본에서 동일한 신뢰 구간이 생성될 가능성은 없습니다. 그러나 표본 추출을 여러 번 반복하면 일정한 백분율의 신뢰 구간이나 한계에는 알 수 없는 모집단 차이가 포함됩니다. 차이를 포함하는 이러한 신뢰 구간 또는 한계의 백분율이 해당 구간의 신뢰 수준입니다. 예를 들어, 95% 신뢰 수준은 모집단에서 100개의 랜덤 표본을 추출할 경우 약 95개의 표본이 모집단 차이가 포함된 구간을 생성할 것으로 예상된다는 것을 나타냅니다.
상한은 모집단 차이가 더 작을 가능성이 높은 값을 정의합니다. 하한은 모집단 차이가 더 클 가능성이 높은 값을 정의합니다.
신뢰 구간은 결과의 실제 유의성을 평가하는 데 도움이 됩니다. 해당 상황에 실제적으로 유의한 값이 신뢰 구간에 포함되는지 여부를 확인하려면 전문 지식을 이용하십시오. 신뢰 구간이 너무 넓어서 유의하지 않은 경우에는 표본 크기를 늘려보십시오.
차이 | 차이에 대한 CI | 달성된 신뢰 수준 |
---|---|---|
-1.85 | (-3, -0.9) | 95.52% |
이 결과의 경우 두 도로에서 페인트가 남아 있는 개월 수의 차이에 대한 모집단 중위수의 추정치는 −1.85입니다. 모집단 중위수 간의 차이가 −3.0과 −0.9 사이에 있다고 95.52% 확신할 수 있습니다.
Mann-Whitney 통계량(W-값)은 첫 번째 표본의 순위 합입니다.
Minitab에서는 Mann-Whitney 통계량을 사용하여 귀무 가설에 반하는 증거를 측정하는 확률인 p-값을 계산합니다.
Mann-Whitney 통계량은 표본 크기에 따라 다르게 해석되므로, 검정에 대한 결정을 내리려면 p-값을 사용해야 합니다. p-값은 표본 크기에 관계없이 의미가 같습니다.
p-값은 귀무 가설에 반하는 증거를 측정하는 확률입니다. p-값이 작을수록 귀무 가설에 반하는 더 강력한 증거가 됩니다.
모집단 중위수의 차이가 통계적으로 유의한지 여부를 확인하려면 p-값을 사용하십시오.
같은 값은 두 표본에 동일한 값이 있을 때 발생합니다. 데이터에 같은 값이 있는 경우 Minitab에서는 같은 값에 대해 수정된 p-값과 같은 값에 대해 수정되지 않은 p-값을 표시합니다. 수정된 p-값은 일반적으로 수정되지 않은 p-값보다 더 정확합니다. 그러나 수정되지 않은 p-값은 특정한 표본 쌍에 대해 수정된 p-값보다 항상 크기 때문에 더 보수적인 추정치입니다.