유의 수준(α 또는 알파로 표시됨)은 귀무 가설이 참일 때 귀무 가설을 기각할 위험(제1종 오류)의 최대 허용 수준입니다. 기본값은 0.05입니다.
귀무 가설(H0)을 기각할지 여부를 결정하려면 유의 수준을 사용합니다. 사건이 발생하는 확률이 유의 수준보다 작은 경우 일반적으로 결과가 통계적으로 유의하다고 해석하고 H0을 기각합니다.
표본 크기(N)는 표본의 총 관측치 수입니다.
평균은 모든 관측치의 합을 관측치 수로 나눈 데이터의 평균입니다.
데이터 중심을 나타내는 하나의 값으로 표본을 설명하려면 평균을 사용하십시오. 많은 통계 분석에서 평균을 데이터의 분포 중심에 대한 표준 측도로 사용합니다.
표준 편차는 산포, 즉 데이터가 평균을 중심으로 퍼져 있는 정도를 나타내는 가장 일반적인 측도입니다. 모집단의 표준 편차를 나타내는 데는 σ(시그마) 기호를 자주 사용하는 반면, 표본의 표준 편차를 사용하는 데는 s를 사용합니다. 랜덤이 아니거나 공정에 자연스럽지 못한 변동은 종종 잡음이라고 합니다.
표준 편차는 데이터와 단위가 같기 때문에 일반적으로 분산보다 더 쉽게 해석할 수 있습니다.
데이터가 평균을 중심으로 퍼져 있는 정도를 확인하려면 표준 편차를 사용합니다. 표준 편차 값이 클수록 데이터가 더 퍼져 있다는 것을 나타냅니다. 정규 분포에 대한 일반 규칙은 대략 68%의 값이 평균으로부터 1 표준 편차 거리 내에 있고, 95%의 값이 2 표준 편차 거리 내에 있고, 99.7%의 값이 3 표준 편차 거리 내에 있다는 것입니다.
최대값은 가장 큰 데이터 값입니다.
이 데이터에서 최대값은 19입니다.
13 | 17 | 18 | 19 | 12 | 10 | 7 | 9 | 14 |
가능한 특이치 또는 데이터 입력 오류를 식별하려면 최대값을 사용합니다. 데이터의 산포를 평가하는 가장 간단한 방법은 최소값과 최대값을 비교하는 것입니다. 최대값이 아주 큰 경우에는 데이터의 중심, 산포, 모양 외에 극단값의 원인도 조사하십시오.
최소값은 가장 작은 데이터 값입니다.
이 데이터에서 최소값은 7입니다.
13 | 17 | 18 | 19 | 12 | 10 | 7 | 9 | 14 |
가능한 특이치 또는 데이터 입력 오류를 식별하려면 최소값을 사용합니다. 데이터의 산포를 평가하는 가장 간단한 방법은 최소값과 최대값을 비교하는 것입니다. 최소값이 아주 작은 경우에는 데이터의 중심, 산포, 모양 외에 극단값의 원인도 조사하십시오.
특이치는 비정상적으로 크거나 작은 관측치입니다. 특이치의 원인을 식별합니다. 모든 데이터 입력 오류 또는 측정 오류를 수정합니다. 비정상적인 일회성 사건에 대한 데이터 값을 삭제합니다(특수 원인이라고도 함).
워크시트에서 특이치가 포함된 행. Minitab에서는 특이치가 존재하는 경우에만 이 값을 표시합니다.
Dixon의 비율 검정 중 하나를 사용하는 경우 Minitab에서는 검정 표에 최소값과 최대값 외에 추가 관측치를 표시합니다. 대괄호 안의 값은 다른 값에 상대적인 관측치의 크기를 나타냅니다. 예를 들어, x[2]는 두번째로 작은 관측치를 나타내고 x[N-1]은 두번째로 큰 관측치를 나타냅니다.
Grubbs의 검정 통계량(G)은 표본 평균과 가장 작은 데이터 값 또는 가장 큰 데이터 값의 차이를 표준 편차로 나눈 값입니다. Minitab에서는 Grubbs의 검정 통계량을 사용하여 귀무 가설이 참일 때 귀무 가설을 기각할 확률 p-값을 계산합니다.
p-값은 귀무 가설에 반하는 증거를 측정하는 확률입니다. p-값이 작을수록 귀무 가설에 반하는 더 강력한 증거가 됩니다.
특이치의 존재 여부를 확인하려면 p-값을 사용하십시오.
특이치 그림은 개별 그림입니다. 데이터의 특이치를 식별하려면 특이치 그림을 사용합니다. 특이치가 존재하면 Minitab에서는 그림에서 빨간색 정사각형으로 표시합니다. 특이치의 원인을 식별합니다. 모든 데이터 입력 오류 또는 측정 오류를 수정합니다. 비정상적인 일회성 사건에 대한 데이터 값을 삭제합니다(특수 원인이라고도 함).