차이는 추정하려는 모집단 발생률 간의 알 수 없는 차이입니다. Minitab에서 어느 모집단 발생률을 다른 모집단 발생률에서 빼는지 나타냅니다.
포아송 공정에서는 시간, 넓이, 부피 및 항목 수를 나타내는 특정 관측 범위에서 특정 사건 또는 특성의 발생 횟수를 셉니다. 관측치 길이는 각 관측 범위의 크기를 나타냅니다.
Minitab에서는 관측치 길이를 사용하여 표본 비율을 상황에 가장 적합한 형식으로 변환합니다.
예를 들어 각 표본 관측치가 연간 사건 발생 횟수를 카운트하는 경우, 길이 1은 연간 발생률을 나타내고 길이 12는 월간 발생률을 나타냅니다.
전체 발생 횟수는 표본에서 사건이 발생한 횟수입니다.
표본 크기(N)는 표본의 총 관측치 수입니다.
표본 크기는 신뢰 구간, 검정의 검정력 및 발생률에 영향을 미칩니다.
일반적으로 표본이 클수록 신뢰 구간이 좁아집니다. 또한 표본 크기가 클수록 차이를 탐지하기 위한 검정력이 더 높습니다. 자세한 내용은 검정력의 정의에서 확인하십시오.
사건의 표본 발생률은 표본에 있는 관측치의 단위 길이당 사건이 발생한 평균 횟수입니다.
각 표본의 표본 발생률은 각 표본의 모평균 발생률 추정치입니다.
관측된 길이가 1이 아닌 경우 Minitab에서는 표본 평균을 표시합니다. 표본 평균은 전체 발생 횟수를 표본 크기로 나눈 값입니다. 그러나 관측치 길이가 1이 아니기 때문에 경우에 따라 표본 비율이 더 유용할 수 있습니다.
추정된 차이는 두 표본의 발생률 간의 차이입니다.
차이는 전체 모집단이 아니라 표본 데이터를 기반으로 하기 때문에 표본 차이가 모집단 차이와 같을 가능성은 없습니다. 모집단 차이를 더 잘 추정하려면 차이에 대한 신뢰 구간을 사용하십시오.
신뢰 구간은 모집단 차이가 될 수 있는 값의 범위를 제공합니다. 표본이 랜덤이기 때문에 모집단의 두 표본에서 동일한 신뢰 구간이 생성될 가능성은 없습니다. 그러나 표본 추출을 여러 번 반복하면 일정한 백분율의 신뢰 구간이나 한계에는 알 수 없는 모집단 차이가 포함됩니다. 차이를 포함하는 이러한 신뢰 구간 또는 한계의 백분율이 해당 구간의 신뢰 수준입니다. 예를 들어, 95% 신뢰 수준은 모집단에서 100개의 랜덤 표본을 추출할 경우 약 95개의 표본이 모집단 차이가 포함된 구간을 생성할 것으로 예상된다는 것을 나타냅니다.
상한은 모집단 차이가 더 작을 가능성이 높은 값을 정의합니다. 하한은 모집단 차이가 더 클 가능성이 높은 값을 정의합니다.
신뢰 구간은 결과의 실제 유의성을 평가하는 데 도움이 됩니다. 해당 상황에 실제적으로 유의한 값이 신뢰 구간에 포함되는지 여부를 확인하려면 전문 지식을 이용하십시오. 신뢰 구간이 너무 넓어서 유의하지 않은 경우에는 표본 크기를 늘려보십시오. 자세한 내용은 더 정밀한 신뢰 구간을 구하는 방법에서 확인하십시오.
추정된 차이 | 차이에 대한 95% CI |
---|---|
-7.7 | (-14.6768, -0.723175) |
이 결과에서 두 우체국의 고객 방문 수의 차이에 대한 모집단 발생률의 추정치는 −7.7입니다. 모집단 발생률의 차이가 약 −14.7과 −0.7 사이에 있다고 95% 확신할 수 있습니다.
결과에서 귀무 가설과 대립 가설은 검정 차이에 대해 올바른 값을 입력했는지 확인하는 데 도움이 됩니다.
Z-값은 Z-검정에 대한 검정 통계량으로, 관측된 통계량과 귀무 가설에서의 모집단 모수 간의 차이를 표준 오차 단위로 측정합니다.
Z-값을 표준 정규 분포의 임계값과 비교하여 귀무 가설의 기각 여부를 확인할 수 있습니다. 그러나 일반적으로 검정의 p-값을 사용하여 결정을 내리는 것이 더 실제적이고 편리합니다.
귀무 가설의 기각 여부를 확인하려면 Z-값을 임계값과 비교하십시오. 임계값은 양측 검정의 경우 Z1-α/2, 단측 검정의 경우 Z1-α입니다. 양측 검정의 경우 Z-값의 절대값이 임계값보다 크면 귀무 가설을 기각합니다. Z-값의 절대값이 임계값보다 작으면 귀무 가설을 기각할 수 없습니다. Minitab에서 임계값을 계산하거나 대부분의 통계 서적에 있는 표준 정규 표에서 임계값을 찾을 수 있습니다. 자세한 내용을 확인하려면 역 누적분포함수(ICDF) 사용으로 이동하여 "ICDF를 사용하여 임계값 계산"을 클릭하십시오.
p-값은 귀무 가설에 반하는 증거를 측정하는 확률입니다. p-값이 작을수록 귀무 가설에 반하는 더 강력한 증거가 됩니다.
모집단 발생률의 차이가 통계적으로 유의한지 여부를 확인하려면 p-값을 사용하십시오.
귀무 가설에서의 차이가 0과 같은 경우 Minitab에서는 정확 검정을 사용하여 귀무 가설을 검정합니다. 정확 검정에 대한 p-값은 정확한 절차의 결과입니다. 다른 p-값은 정규 근사를 바탕으로 하며, 전체 발생 횟수가 적은 경우 부정확할 수 있습니다.