먼저 표본 발생률을 고려한 다음 신뢰 구간을 조사합니다.
사건의 표본 발생률은 해당 사건의 모집단 발생률 추정치입니다. 표본 발생률은 전체 모집단이 아니라 표본 데이터를 기반으로 하기 때문에 표본 발생률이 모집단 발생률과 같을 가능성은 없습니다. 모집단 발생률을 더 잘 추정하려면 신뢰 구간을 사용하십시오.
신뢰 구간은 모집단 발생률이 될 수 있는 값의 범위를 제공합니다. 예를 들어 95% 신뢰 수준은 모집단에서 100개의 랜덤 표본을 추출할 경우 약 95개의 표본에서 모집단 발생률이 포함된 구간을 생성할 것으로 예상됨을 의미합니다. 신뢰 구간은 결과의 실제 유의성을 평가하는 데 도움이 됩니다. 해당 상황에 실제적으로 유의한 값이 신뢰 구간에 포함되는지 여부를 확인하려면 전문 지식을 이용하십시오. 신뢰 구간이 너무 넓어서 유의하지 않은 경우에는 표본 크기를 늘려보십시오. 자세한 내용은 더 정밀한 신뢰 구간을 구하는 방법에서 확인하십시오.
N | 총 발생 수 | 표본 비율 | λ의 95% CI |
---|---|---|---|
30 | 598 | 19.9333 | (18.3675, 21.5970) |
이 결과에서 일일 고객 불만 수에 대한 모집단 발생률은 약 19.93입니다. 모집단 발생률이 대략 18.37과 21.6 사이에 있다고 95% 확신할 수 있습니다.
λ: 불만의 수의 포아송 비율 |
---|
이 분석에는 정확 방법이 사용됩니다. |
N | 총 발생 수 | 표본 비율 | λ에 대한 95% 하한 |
---|---|---|---|
30 | 598 | 19.9333 | 18.6118 |
귀무 가설 | H₀: λ = 10 |
---|---|
대립 가설 | H₁: λ > 10 |
P-값 |
---|
0.000 |
이 결과에서 귀무 가설은 불평 비율이 하루 10개라는 것입니다. p-값이 0.000으로, 유의 수준 0.05보다 작기 때문에 관리자는 귀무 가설을 기각하고 불평 비율이 하루 10개보다 크다는 결론을 내립니다.