전체 자유도(DF)는 데이터에 있는 정보의 양입니다. 분석에서는 이 정보를 사용하여 알려져 있지 않은 모집단 모수의 값을 추정합니다. 전체 DF는 표본의 관측치 수로 결정됩니다. 항의 DF는 해당 항에서 사용하는 정보의 양을 보여줍니다. 표본 크기를 증가시키면 모집단에 대한 더 많은 정보가 제공되므로, 전체 DF가 증가합니다. 모형의 항 수를 증가시키면 더 많은 정보를 사용하며, 모수 추정치의 변동성을 추정하기 위해 사용할 수 있는 DF가 감소합니다.
두 조건이 충족되면 Minitab에서 오차에 대한 DF를 분할합니다. 첫 번째 조건은 현재 모형에 포함되지 않은 데이터를 사용하여 적합할 수 있는 항이 있어야 한다는 것입니다. 예를 들어, 구별되는 값이 3개 이상인 계량형 예측 변수가 있는 경우 해당 예측 변수에 대한 2차 항을 추정할 수 있습니다. 모형에 2차 항이 포함되지 않은 경우 데이터가 적합할 수 있는 항이 모형에 포함되지 않으며 이 조건이 충족됩니다.
두 번째 조건은 데이터에 반복실험이 포함된다는 것입니다. 반복실험은 각 예측 변수의 값이 같은 관측치입니다. 예를 들어, 압력이 5이고 온도가 25인 관측치가 3개인 경우 이 3개의 관측치가 반복실험입니다.
두 조건이 충족되면 오차에 대한 DF의 두 부분이 적합성 결여 및 순수 오차입니다. 적합성 결여에 대한 DF를 사용하면 모형 형태가 적절한지 여부를 검정할 수 있습니다. 적합성 결여 검정은 적합성 결여에 대한 자유도를 사용합니다. 순수 오차에 대한 DF가 클수록 적합성 결여 검정의 검정력이 더 큽니다.
순차 제곱합(SS)은 모형의 여러 성분에 대한 변동성의 측도입니다. 수정 제곱합과 달리 순차 제곱합은 항이 모형에 입력되는 순서에 종속됩니다. Minitab은 순차적 분산 분석표에서 순차 제곱합을 모형의 다항식 항(선형, 2차 및 3차)으로 구분합니다.
Minitab에서는 항에 대한 p-값을 계산하기 위해 순차 제곱합을 사용합니다. Minitab에서는 R2 통계량을 계산하기 위해서도 제곱합을 사용합니다. 일반적으로 제곱합 대신 p-값과 R2 통계량을 해석합니다.
F-값은 모형이 반응과 연관되어 있는지 확인하기 위해 사용되는 검정 통계량입니다.
Minitab에서는 F-값을 사용하여 모형의 통계적 유의성에 대한 결정을 내릴 때 사용하는 p-값을 계산합니다. p-값은 귀무 가설에 반하는 증거를 측정하는 확률입니다. p-값이 작을수록 귀무 가설에 반하는 더 강력한 증거가 됩니다.
F-값이 충분히 크면 항이나 모형이 유의하다는 것을 나타냅니다.
F-값을 사용하여 귀무 가설의 기각 여부를 확인하려면 F-값을 임계값과 비교하십시오. Minitab에서 임계값을 계산하거나 대부분의 통계 서적에 있는 F-분포 표에서 임계값을 찾을 수 있습니다. Minitab을 사용한 임계값 계산에 대한 자세한 내용을 보려면 역 누적분포함수(ICDF) 사용에서 "ICDF를 사용하여 임계값 계산"을 클릭하십시오.
p-값은 귀무 가설에 반하는 증거를 측정하는 확률입니다. p-값이 작을수록 귀무 가설에 반하는 더 강력한 증거가 됩니다.
p-값이 유의 수준보다 크면 반응 변수와 항 간에 통계적으로 유의한 연관성이 있다는 결론을 내릴 수 없습니다. 2차 모형 또는 3차 모형을 적합시키고 2차 항 또는 3차 항이 통계적으로 유의하지 않은 경우 다른 모형을 선택할 수도 있습니다.