모형의 계량형 예측 변수를 표준화할 수 있습니다. 표준화된 예측 변수는 모형을 적합화하는 데만 사용되고 워크시트에는 저장되지 않습니다.
계량형 예측 변수를 표준화하면 특정 조건에서 모형 해석이 개선될 수 있습니다.
- 평균을 빼서 계량형 예측 변수를 중앙에 표시: 이 방법은 다중 공선성을 줄이므로 계수 추정 정밀도를 개선하는 데 도움이 됩니다. 모형에 상관 관계가 높은 예측 변수, 고차항, 교호작용 항이 포함되어 있는 경우 유용한 방법입니다. 각 계수는 원래 측정 척도를 사용한 예측 변수의 1단위 변동에 대한 반응의 예상 변동을 나타냅니다.
- 표준 편차로 나눠서 계량형 예측 변수의 척도 표준화: 이 방법을 사용하면 계수 크기를 비교할 수 있도록 예측 변수 범위의 동질성이 높아집니다. 척도의 차이를 관리하면서 어느 예측 변수의 효과가 더 큰지 알려는 경우 유용한 방법입니다. 그러나 각 계수는 예측 변수의 단일 표준 편차 변동을 감안한 반응의 예상 변동을 나타냅니다.
계량형 예측 변수를 표준화하려면 다음 방법 중 하나를 사용하십시오.
- 표준화 안 함: 원래 데이터를 계량형 예측 변수로 사용합니다.
- 코드화할 낮은 수준과 높은 수준을 -1과 +1로 지정: 예측 변수를 중앙에 표시하고 비교 가능한 척도에 배치하는 데 모두 사용합니다. Minitab은 이 방법을 실험 계획(DOE)에 사용합니다. 지정한 하한 값과 상한 값 사이에 있는 모든 데이터 값은 -1과 +1 사이에 있도록 변환됩니다. 표에 하한 값과 상한 값을 입력하거나 표준의 기본 최소값과 최대값을 사용하십시오.
- 계량형 예측 변수
- 모형에 있는 모든 범주형 예측 변수의 이름을 표시합니다. 이 열에는 값을 입력할 수 없습니다.
- 낮음
- 코드에 값을 -1로 입력합니다. 기본값은 표본의 최소값입니다.
- 높음
- 코드화할 값을 +1로 입력합니다. 기본값은 표본의 최대값입니다.
- 평균값을 뺀 후 표준 편차로 나누기: 예측 변수를 중앙에 표시하고 비교 가능한 척도에 배치하는 데 모두 사용합니다.
- 평균값 빼기: 예측 변수를 중앙으로 보내는 데 사용합니다.
- 표준 편차로 나누기: 모든 예측 변수에 비교 가능한 척도를 사용합니다.
- 지정된 값을 뺀 후 다른 값으로 나누기: 표본의 추정 평균과 표준 편차를 사용하지 않고 다른 값을 지정합니다.
- 계량형 예측 변수
- 모형에 있는 모든 범주형 예측 변수의 이름을 표시합니다. 이 열에는 값을 입력할 수 없습니다.
- 빼기
- 각 계량형 예측 변수에서 뺄 값을 입력합니다.
- 나누기
- Minitab이 뺀 결과를 나누는 데 사용하는 값을 입력합니다.