단계적 방법은 항을 제거하고 항의 유용한 부분 집합을 식별하기 위해 모형에 항을 추가합니다. 단계적 절차를 선택하는 경우 모형 대화 상자에서 지정한 항은 최종 모형의 후보입니다. 자세히 알려면 단계적 회귀 분석 및 최량 부분 집합 회귀 분석 사용(으)로 이동하십시오.
교차 검증을 사용하면 절차가 각 폴드에서 전진 선택을 반복합니다. 이 절차는 각 단계에서 모든 폴드를 평가하고 최상의 k-폴드 단계적 결정계수 값으로 단계를 식별합니다. 절차의 마지막 부분은 전체 데이터 세트에서 전진 선택을 수행하고 폴드의 선택에서 최상의 단계에서 중지하는 것입니다.
두 가지 유형의 검증에 대해 절차는 전진 정보 기준 절차와 동일한 조건에서 중지됩니다.
최종 모형에 포함된 항은 모형에 대한 계층 구조 제한에 따라 달라질 수 있습니다. 자세한 내용은 아래 계층 구조의 항목을 참조하십시오.
전진 선택에서 사용할 정보 기준을 선택합니다.
AICc와 BIC 모두 모형의 우도를 평가한 다음 모형에 항을 추가하는 데 대한 벌칙을 적용합니다. 벌칙은 모형을 표본데이터에 과다 적합하는 경향을 줄입니다. 이에 따라 일반적으로 더 잘 수행되는 모형이 생성됩니다.
일반 지침에 따라, 모수 수가 표본 크기에 비해 작은 경우 AICc보다 BIC가 각 모수의 추가에 대한 벌칙이 더 큽니다. 이러한 경우 BIC를 최소화하는 모형이 AICc를 최소화하는 모형보다 더 작은 경향이 있습니다.
선별 설계와 같은 몇 가지 일반적인 경우, 모수의 수가 일반적으로 표본 크기에 비해 큽니다. 이러한 경우 AICc를 최소화하는 모형이 BIC를 최소화하는 모형보다 더 작은 경향이 있습니다. 예를 들어, 13-런 확정 선별 설계의 경우 모수가 6개 이상인 모형의 집합 중에서 AICc를 최소화하는 모형이 BIC를 최소화하는 모형보다 더 작은 경향이 있습니다.
AICc 및 BIC에 대한 자세한 내용은 Burnham and Anderson.1
검증 설정도 확인 하위 대화 상자에 있습니다. 설정을 변경하면 Minitab이 두 위치에서 자동으로 설정을 업데이트합니다.
검증을 사용한 전진 선택을 선택하면 모형을 검정할 검증 방법을 선택합니다. 일반적으로 표본이 작은 경우 K-폴드 교차 검증 방법이 적합합니다. 더 큰 표본을 사용하면 데이터를 학습 데이터 세트와 검정 데이터 세트로 나눌 수 있습니다.
다음 단계에 따라 K-폴드 교차 검증을 사용합니다.
다음 단계를 완료하여 데이터를 학습 데이터 세트와 검정 데이터 세트로 나눕니다.
Minitab에서 단계적 분석 절차 중에 모형 계층구조를 적용하도록 할 방법을 결정할 수 있습니다. 모형 대화 상자에서 비계층적 모형을 지정하면 계층 구조 버튼을 사용할 수 없게 됩니다.
계층적 모형에서는 높은 차수의 항을 구성하는 모든 낮은 차수의 항이 모형에 표시됩니다. 예를 들어 교호작용 항 A*B*C가 포함된 모형은 A, B, C, A*B, A*C, B*C 항이 포함된 경우 계층적입니다.
모형은 비계층적일 수 있습니다. 차수가 낮은 항이 유의하지 않을 경우 주제 분야에서 포함할 것을 제안하지 않으면 일반적으로 해당 항을 제거할 수 있습니다. 너무 많은 항이 포함된 모형은 상대적으로 정확하지 않을 수 있으며, 새로운 관측값을 예측하는 능력을 저하시킬 수 있습니다.
검증을 사용한 전진 선택을 선택하면 전진 선택의 각 단계에 대해 학습 및 검증 R2 값의 플롯을 표시합니다. 일반적으로 그림을 사용하여 간단한 모형에 유사한 검증 값이 있는지 여부를 결정합니다.