편차 잔차의 히스토그램은 모든 관측치에 대한 잔차 분포를 보여줍니다.
편차 잔차를 사용하든지 Pearson 잔차를 사용하든지 여부에 상관없이 이러한 잔차 그림은 동일하게 해석됩니다. 각 예측 변수 설정 조합에 대한 시행 횟수가 증가하면 편차 잔차와 Pearson 잔차가 더 유사해집니다.
패턴 | 패턴이 나타내는 내용 |
---|---|
한 쪽 방향의 긴 꼬리 | 왜도 |
다른 막대들과 멀리 떨어져 있는 막대 | 특이치 |
히스토그램 모양은 데이터를 그룹으로 나누는 데 사용된 구간 수에 따라 다르므로, 히스토그램을 사용하여 잔차의 정규성을 평가하지 마십시오. 그 대신 정규 확률도를 사용하십시오.
잔차의 정규 확률도는 분포가 정규 분포일 때 잔차 대 잔차의 기대값을 표시합니다.
편차 잔차를 사용하든지 Pearson 잔차를 사용하든지 여부에 상관없이 이러한 잔차 그림은 동일하게 해석됩니다. 각 예측 변수 설정 조합에 대한 시행 횟수가 증가하면 편차 잔차와 Pearson 잔차가 더 유사해집니다.
잔차가 정규 분포를 따른다는 가정을 확인하려면 잔차의 정규 확률도를 사용하십시오. 잔차의 정규 확률도는 대략 직선을 따라야 합니다.
비정규 패턴이 보이면 다른 잔차 그림을 사용하여 모형에 항 누락 또는 시간 순서 효과와 같은 다른 문제가 있는지 확인하십시오. 잔차가 정규 분포를 따르지 않는 경우 신뢰 구간과 p-값이 정확하지 않을 수 있습니다.
잔차 대 적합치 그림은 y-축에 잔차, x-축에 적합치를 표시합니다.
편차 잔차를 사용하든지 Pearson 잔차를 사용하든지 여부에 상관없이 이러한 잔차 그림은 동일하게 해석됩니다. 각 예측 변수 설정 조합에 대한 시행 횟수가 증가하면 편차 잔차와 Pearson 잔차가 더 유사해집니다.
잔차가 랜덤하게 분포되어 있고 잔차의 분산이 일정하다는 가정을 확인하려면 잔차 대 적합치 그림을 사용하십시오. 이상적으로는 점들이 식별 가능한 패턴 없이 0의 양쪽에 랜덤하게 분포해야 합니다.
패턴 | 패턴이 나타내는 내용 |
---|---|
적합치에 대해 잔차가 부채꼴 모양으로 흩어져 있거나 고르지 않게 퍼져 있음 | 부적절한 연결 함수 |
곡선 | 고차 항 누락 또는 부적절한 연결 함수 |
한 점이 0에서 멀리 떨어져 있음 | 특이치 |
다른 점에서 x 방향으로 멀리 떨어져 있는 점 | 영향력 있는 점 |
문제 | 가능한 해결 방법 |
---|---|
일정하지 않은 분산 | 모형의 다른 항, 다른 연결 함수 또는 가중치를 사용하는 것을 고려해 보십시오. |
특이치 또는 영향력 있는 점 |
|
잔차 대 순서 그림은 잔차를 데이터가 수집된 순서대로 표시합니다.
편차 잔차를 사용하든지 Pearson 잔차를 사용하든지 여부에 상관없이 이러한 잔차 그림은 동일하게 해석됩니다. 각 예측 변수 설정 조합에 대한 시행 횟수가 증가하면 편차 잔차와 Pearson 잔차가 더 유사해집니다.
잔차 대 변수 그림은 잔차 대 다른 변수를 표시합니다. 변수가 이미 모형에 포함되어 있을 수 있습니다. 또는 변수가 모형에 포함되어 있지 않을 수도 있지만 반응에 영향을 미칠 것으로 예상됩니다.
편차 잔차를 사용하든지 Pearson 잔차를 사용하든지 여부에 상관없이 이러한 잔차 그림은 동일하게 해석됩니다. 각 예측 변수 설정 조합에 대한 시행 횟수가 증가하면 편차 잔차와 Pearson 잔차가 더 유사해집니다.
변수가 이미 모형에 포함되어 있는 경우 이 그림을 사용하여 변수의 고차 항을 추가해야 할지 여부를 결정합니다. 변수가 모형에 포함되지 않은 경우에는 이 그림을 사용하여 변수가 체계적으로 반응에 영향을 미치는지 확인합니다.
패턴 | 패턴이 나타내는 내용 |
---|---|
잔차의 패턴 | 변수가 체계적으로 반응에 영향을 미칩니다. 모형에 변수가 없는 경우에는 해당 변수에 대한 항을 포함하고 모형을 다시 적합시킵니다. |
점의 곡면성 | 변수의 고차 항을 모형에 포함해야 합니다. 예를 들어, 곡선이 있는 패턴은 제곱 항을 추가해야 한다는 것을 의미합니다. |