편차 잔차의 히스토그램은 모든 관측치에 대한 잔차 분포를 보여줍니다.
편차 잔차를 사용하든지 Pearson 잔차를 사용하든지 여부에 상관없이 그림은 동일하게 해석됩니다. 모형에서 로짓 연결 함수를 사용하는 경우 편차 잔차의 분포가 최소 제곱법 회귀 모형의 잔차 분포에 더 가깝습니다. 각 예측 변수 설정 조합에 대한 시행 횟수가 증가하면 편차 잔차와 Pearson 잔차가 더 유사해집니다.
패턴 | 패턴이 나타내는 내용 |
---|---|
한 쪽 방향의 긴 꼬리 | 왜도 |
다른 막대들과 멀리 떨어져 있는 막대 | 특이치 |
히스토그램 모양은 데이터를 그룹으로 나누는 데 사용된 구간 수에 따라 다르므로, 히스토그램을 사용하여 잔차의 정규성을 평가하지 마십시오. 그 대신 정규 확률도를 사용하십시오.
잔차의 정규 확률도는 분포가 정규 분포일 때 잔차 대 잔차의 기대값을 표시합니다.
편차 잔차를 사용하든지 Pearson 잔차를 사용하든지 여부에 상관없이 그림은 동일하게 해석됩니다. 모형에서 로짓 연결 함수를 사용하는 경우 편차 잔차의 분포가 최소 제곱법 회귀 모형의 잔차 분포에 더 가깝습니다. 각 예측 변수 설정 조합에 대한 시행 횟수가 증가하면 편차 잔차와 Pearson 잔차가 더 유사해집니다.
잔차가 정규 분포를 따른다는 가정을 확인하려면 잔차의 정규 확률도를 사용하십시오. 잔차의 정규 확률도는 대략 직선을 따라야 합니다.
비정규 패턴이 있으면 다른 잔차 그림을 사용하여 모형에 항 누락 또는 시간 순서 효과와 같은 다른 문제가 있는지 확인하십시오. 잔차가 정규 분포를 따르지 않을 경우 정규 근사 신뢰 구간과 Wald 검정 p-값이 정확하지 않을 수 있습니다.
이항 로지스틱 회귀 분석에서는 데이터가 이항 반응/빈도 형식(행당 단일 시행)인 경우 Minitab에서 이 그림을 제공하지 않습니다
편차 잔차를 사용하든지 Pearson 잔차를 사용하든지 여부에 상관없이 그림은 동일하게 해석됩니다. 모형에서 로짓 연결 함수를 사용하는 경우 편차 잔차의 분포가 최소 제곱법 회귀 모형의 잔차 분포에 더 가깝습니다. 각 예측 변수 설정 조합에 대한 시행 횟수가 증가하면 편차 잔차와 Pearson 잔차가 더 유사해집니다.
잔차가 랜덤하게 분포되어 있다는 가정을 확인하려면 잔차 대 적합치 그림을 사용하십시오. 이상적으로는 점들이 식별 가능한 패턴 없이 0의 양쪽에 랜덤하게 분포해야 합니다.
패턴 | 패턴이 나타내는 내용 |
---|---|
적합치에 대해 잔차가 부채꼴 모양으로 흩어져 있거나 고르지 않게 퍼져 있음 | 부적절한 연결 함수 |
곡선 | 고차 항 누락 또는 부적절한 연결 함수 |
한 점이 0에서 멀리 떨어져 있음 | 특이치 |
다른 점에서 x 방향으로 멀리 떨어져 있는 점 | 영향력 있는 점 |
문제 | 가능한 해결 방법 |
---|---|
일정하지 않은 분산 | 모형의 다른 항, 다른 연결 함수 또는 가중치를 사용하는 것을 고려해 보십시오. |
특이치 또는 영향력 있는 점 |
|
잔차 대 순서 그림은 잔차를 데이터가 수집된 순서대로 표시합니다.
편차 잔차를 사용하든지 Pearson 잔차를 사용하든지 여부에 상관없이 그림은 동일하게 해석됩니다. 모형에서 로짓 연결 함수를 사용하는 경우 편차 잔차의 분포가 최소 제곱법 회귀 모형의 잔차 분포에 더 가깝습니다. 각 예측 변수 설정 조합에 대한 시행 횟수가 증가하면 편차 잔차와 Pearson 잔차가 더 유사해집니다.
잔차 대 변수 그림은 잔차 대 다른 변수를 표시합니다. 변수가 이미 모형에 포함되어 있을 수 있습니다. 또는 변수가 모형에 포함되어 있지 않을 수도 있지만 반응에 영향을 미칠 것으로 예상됩니다.
편차 잔차를 사용하든지 Pearson 잔차를 사용하든지 여부에 상관없이 그림은 동일하게 해석됩니다. 모형에서 로짓 연결 함수를 사용하는 경우 편차 잔차의 분포가 최소 제곱법 회귀 모형의 잔차 분포에 더 가깝습니다. 각 예측 변수 설정 조합에 대한 시행 횟수가 증가하면 편차 잔차와 Pearson 잔차가 더 유사해집니다.
변수가 이미 모형에 포함되어 있는 경우 이 그림을 사용하여 변수의 고차 항을 추가해야 할지 여부를 결정합니다. 변수가 모형에 포함되지 않은 경우에는 이 그림을 사용하여 변수가 체계적인 방식으로 반응에 영향을 미치는지 여부를 확인합니다.
패턴 | 패턴이 나타내는 내용 |
---|---|
잔차의 패턴 | 변수가 체계적으로 반응에 영향을 미칩니다. 모형에 변수가 없는 경우에는 해당 변수에 대한 항을 포함하고 모형을 다시 적합시킵니다. |
점의 곡면성 | 변수의 고차 항을 모형에 포함해야 합니다. 예를 들어, 곡선이 있는 패턴은 제곱 항을 추가해야 한다는 것을 의미합니다. |