측정 시스템의 변동성이 너무 크면 실험에 중요한 효과를 찾기 위한 검정력이 결여될 수도 있습니다.
각 관측치가 다른 모든 관측치로부터 독립적이어야 함
개별 관측치가 종속되면 결과가 유효하지 않을 수도 있습니다. 관측치가 독립적인지 여부를 확인하려면 다음과 같은 점을 고려하십시오.
한 관측치가 다른 관측치에 대한 정보를 제공하지 않으면 관측치가 독립적입니다.
한 관측치가 다른 관측치에 대한 정보를 제공하면 관측치가 종속됩니다.
실험 런이 랜덤화되어야 함
랜덤화하면 제어되지 않는 조건으로 인해 결과가 치우칠 확률이 감소합니다. 랜덤화를 통해 재료와 조건의 내재되어 있는 변동을 추정할 수 있으므로 실험의 데이터를 근거로 올바른 통계 추론을 작성할 수 있습니다.
경우에 따라 랜덤화로 인해 바람직하지 않은 런 순서가 지정될 수도 있습니다. 예를 들어, 요인 수준을 변경하기 어렵고 비용이 많이 들거나 안정된 공정을 생성하는 데 오랜 시간이 걸릴 수 있습니다. 이러한 경우에는 수준 변경을 최소화하기 위해 분할구 설계를 사용하여 랜덤화할 수도 있습니다.
최적의 경험을 사용한 데이터 수집
유효한 결과를 얻으려면 다음 지침을 따르십시오.
데이터가 관심 있는 모집단을 나타내는지 확인합니다.
필요한 정밀도를 제공하기에 충분한 데이터를 수집합니다.
데이터를 수집된 순서대로 기록합니다.
모형이 데이터를 잘 적합해야 함
모형이 데이터를 적합시키지 않으면 잘못된 결과를 얻을 수 있습니다. 결과에서 잔차 그림, 비정상적인 관측치에 대한 진단 통계량 및 모형 요약 통계량을 사용하여 모형이 데이터를 얼마나 잘 적합시키는지 확인하십시오.