기존 선형 모형을 일반화 선형 모형으로 확장하려면 지수 모임 분포와 연결 함수의 두 가지 부분이 필요합니다.
첫 부분에서는 선형 모형을 지수 모임이라는 큰 분포 모임의 구성원인 반응 변수로 확장합니다. 분포의 지수 모임에 속한 구성원은 관측된 반응에 대해 다음과 같은 일반적인 형식의 확률 분포 함수를 갖습니다.
여기서 a(∙), b(∙) 및 c(∙)는 반응 변수의 분포에 종속됩니다. 모수 θ는 보통 표준 모수라고 하는 위치 모수이고, ϕ는 산포 모수라고 합니다. 함수 a(ϕ)는 일반적으로 a(ϕ)= ϕ/ ω 형태이고, 여기서 ω는 알려진 상수 또는 관측치에 따라 달라질 수도 있는 가중치입니다. (Minitab에서 가중치가 주어지면 함수 a(ϕ)가 적절히 조정됩니다.)
지수 모임의 구성원은 이산형 분포이거나 계량형 분포일 수 있습니다. 지수 모임의 구성원인 계량형 분포의 예는 정규 및 감마 분포입니다. 지수 모임의 구성원인 이산형 분포의 예는 이항 및 포아송 분포입니다. 아래 표에는 이러한 분포 특성들이 나와 있습니다.
분포 | ϕ | b(θ) | a(φ) | c(y, ϕ) |
정규 분포 | σ2 | θ2/2 | φω | |
이항 분포 | 1 | φ/ω | -ln(y!) | |
포아송 분포 | 1 | exp(θ) | φ/ω |
두 번째 부분은 연결 함수입니다. 연결 함수는 i 번째 관측치의 반응 평균을 다음과 같은 형식으로 선형 예측 변수에 연결합니다.
기존 선형 모형은 연결 함수가 항등원 함수인 이 일반 공식의 특별한 경우입니다.
두 번째 부분에서 선택하는 연결 함수는 첫 부분의 지수 모임의 특정 분포에 따라 결정됩니다. 특히 지수 모임의 각 분포에는 정규 연결 함수라는 특수 연결 함수가 있습니다. 이 연결 함수는 θ가 정규 모수인 g (μi) = Xi'β= θ 방정식을 충족합니다. 정규 연결 함수의 결과는 몇 가지 바람직한 모형의 통계적 속성입니다. 적합도 통계량은 다른 연결 함수를 사용하여 적합치를 비교하는 데 사용할 수 있습니다. 일부 연결 함수는 경험적인 이유로 또는 원칙에 있어 특별한 의미를 가지고 있기 때문에 사용할 수도 있습니다. 예를 들어, 로짓연결함수의 장점은 승산비의 추정치를 제공한다는 것입니다. 또 다른 예는 노밋 연결 함수에서는 이원 범주로 분류된 정규 분포를 따르는 기본 변수가 있다고 가정한다는 것입니다.
Minitab은 세 가지 연결 함수를 제공합니다. 서로 다른 연결 함수를 사용하여 다양한 데이터에 충분히 적합한 모형을 찾을 수 있습니다. 연결 함수는 로짓, 노밋(프로빗) 및 곰핏(보 로그-로그)입니다. 이 연결 함수들은 누적 로지스틱 분포 함수의 역함수(로짓), 표준 누적 정규 분포 함수의 역함수(노밋), 그리고 Gompertz 분포 함수의 역함수(곰핏)입니다. 로짓은 이항 분포 모형에 대한 정규 연결 함수이므로, 로짓이 기본 연결 함수입니다.
모형 | 이름 | 연결 함수, g(μi) |
이항 분포 | 로짓 | |
이항 분포 | 노밋(프로빗) | |
이항 분포 | 곰핏(보 로그-로그) |
용어 | 설명 |
---|---|
μi | i 번째 행의 평균 반응 |
g(μi) | 연결 함수 |
X | 예측 변수의 벡터 |
β | 예측 변수와 연관된 계수의 벡터 |
정규 분포의 역 누적분포함수 |
데이터 집합의 단일 요인/공변량 값 집합에 대해 설명합니다. Minitab에서는 각 요인/공변량 패턴에 대한 사건 확률, 잔차 및 기타 진단 측도를 계산합니다.
예를 들어 데이터 집합에 성별 및 인종 요인과 나이 공변량이 포함되어 있는 경우, 이런 예측 변수의 조합에는 피실험자 수만큼 많은 공분산 패턴이 포함될 수 있습니다. 데이터 집합에 각각 2개 수준에서 코드화된 인종과 성별 요인만 포함되어 있는 경우, 가능한 요인/공변량 패턴은 4개뿐입니다. 데이터를 빈도나 성공, 시행 또는 실패 횟수로 입력할 경우 각 행에 요인/공변량 패턴이 하나씩 포함됩니다.
Minitab은 각 설계에 대해 설계 행렬을 생성합니다. 첫 번째 열은 상수 항과 관련된 항의 열입니다. 설계가 k개의 블럭으로 구분된 경우 블럭에 대한 열은 (k-1)개가 됩니다. Minitab은 요인 모형의 경우와 같은 방법을 사용하여 블럭을 코드화합니다. 이 다음에는 각 주 효과에 대해 열이 하나씩 나옵니다. 범주형 요인이 있는 항에는 열이 2개 이상 있을 수 있습니다. 모형에 제곱 항이 있으면 각 제곱 항에 대한 열이 하나씩 있습니다. 이 열에는 해당 요인 자체를 곱한 값이 들어갑니다. 모형에 교호작용 항이 있으면 각 교호작용 항에 대한 열이 하나씩 있습니다. 범주형 요인을 포함하는 교호작용에는 열이 2개 이상 있을 수 있습니다. 교호작용 항에 대한 열에는 교차하는 두 열을 곱한 값이 들어갑니다.
데이터에서 지원되지 않기 때문에 제거된 항은 저장된 설계 행렬에 포함되지 않습니다. 저장된 열은 표시된 계수와 일치합니다.