표준화된 효과의 Pareto 차트를 사용하여 주효과, 제곱 효과 및 교호작용 효과의 상대적 크기 및 통계적 유의성을 비교할 수 있습니다.
Minitab은 각 표준화된 효과의 절대값을 내림차순으로 표시합니다. 이때 차트의 기준선은 유의한 효과를 나타냅니다. 기본적으로 Minitab에서는 0.05의 유의 수준을 사용하여 기준선을 그립니다.
반응과 모형의 각 항 간의 연관성이 통계적으로 유의한지 여부를 확인하려면 항에 대한 p-값을 유의 수준과 비교하여 귀무 가설을 평가합니다. 귀무 가설은 항의 계수가 0으로, 항과 반응 간에 연관성이 없다는 것을 나타냅니다. 일반적으로 0.05의 유의 수준(α 또는 알파로 표시됨)이 적절합니다. 0.05의 유의 수준은 실제로 연관성이 없는데 연관성이 존재한다는 결론을 내릴 위험이 5%라는 것을 나타냅니다.
항 | 계수 | SE 계수 | VIF |
---|---|---|---|
상수 | 3.021 | 0.384 | |
시간 | 0.210 | 0.139 | 18.53 |
온도 | 0.641 | 0.159 | 19.53 |
압력 | 0.420 | 0.211 | 70.48 |
시간*시간 | -0.0735 | 0.0482 | 1.01 |
온도*온도 | 0.2988 | 0.0517 | 1.17 |
압력*압력 | -0.0022 | 0.0277 | 70.24 |
시간*온도 | -0.0092 | 0.0505 | 1.14 |
시간*압력 | 0.0417 | 0.0342 | 18.12 |
온도*압력 | -0.0521 | 0.0396 | 19.24 |
이 결과에서는 시간, 온도 및 압력의 주효과에 대한 계수가 양수입니다. 시간*시간의 제곱 항에 대한 계수는 음수입니다. 일반적으로 계수가 양이면 항의 값이 증가함에 따라 사건이 발생할 가능성이 더 높고 계수가 음이면 사건이 발생할 가능성이 낮습니다.
출처 | DF | 수정 분산 | 수정 평균 | 카이-제곱 | P-값 |
---|---|---|---|---|---|
모형 | 9 | 903.478 | 100.386 | 903.48 | 0.000 |
시간 | 1 | 2.303 | 2.303 | 2.30 | 0.129 |
온도 | 1 | 16.388 | 16.388 | 16.39 | 0.000 |
압력 | 1 | 3.966 | 3.966 | 3.97 | 0.046 |
시간*시간 | 1 | 2.331 | 2.331 | 2.33 | 0.127 |
온도*온도 | 1 | 34.012 | 34.012 | 34.01 | 0.000 |
압력*압력 | 1 | 0.006 | 0.006 | 0.01 | 0.937 |
시간*온도 | 1 | 0.033 | 0.033 | 0.03 | 0.856 |
시간*압력 | 1 | 1.490 | 1.490 | 1.49 | 0.222 |
온도*압력 | 1 | 1.731 | 1.731 | 1.73 | 0.188 |
오차 | 5 | 23.404 | 4.681 | ||
총계 | 14 | 926.882 |
이 결과에서는 온도*온도의 제곱 항 및 온도와 압력의 주효과가 α = 0.05 유의 수준에서 유의합니다.
승산비가 1보다 크면 예측 변수가 증가함에 따라 사건 발생 확률이 증가한다는 것을 나타냅니다. 승산비가 1보다 작으면 예측 변수가 증가함에 따라 사건 발생 확률이 감소한다는 것을 나타냅니다.
변경 단위 | 승산비 | 95% CI | |
---|---|---|---|
투여량(mg) | 0.5 | 6.1279 | (1.7218, 21.8087) |
이 결과에서 모형은 한 약품의 투여량 수준을 사용하여 성인의 박테리아 존재 여부를 예측합니다. 박테리아가 존재하지 않는 것이 사건입니다. 각 약에는 0.5mg의 투여량이 포함되어 있으며, 따라서 연구자들은 0.5mg의 단위 변화를 사용합니다. 승산비는 약 6입니다. 성인이 약 하나를 추가로 복용할 때마다 환자에게 박테리아가 없을 확률은 약 6배 증가합니다.
범주형 예측 변수의 경우 승산비는 예측 변수의 서로 다른 2개 수준에서 사건이 발생할 확률을 비교합니다. Minitab에서는 수준 A와 수준 B, 두 열에 수준을 나열하여 비교를 설정합니다. 수준 B는 요인에 대한 기준 수준입니다. 승산비가 1보다 크면 수준 B에서 사건 발생 확률이 증가한다는 것을 나타냅니다. 승산비가 1보다 작으면 수준 B에서 사건 발생 확률이 감소한다는 것을 나타냅니다. 범주형 예측 변수의 코드화에 대한 자세한 내용은 범주형 예측 변수의 코드화 방법에서 확인하십시오.
수준 A | 수준 B | 승산비 | 95% CI |
---|---|---|---|
월 | |||
2 | 1 | 1.1250 | (0.0600, 21.0834) |
3 | 1 | 3.3750 | (0.2897, 39.3165) |
4 | 1 | 7.7143 | (0.7461, 79.7592) |
5 | 1 | 2.2500 | (0.1107, 45.7172) |
6 | 1 | 6.0000 | (0.5322, 67.6397) |
3 | 2 | 3.0000 | (0.2547, 35.3325) |
4 | 2 | 6.8571 | (0.6556, 71.7169) |
5 | 2 | 2.0000 | (0.0976, 41.0019) |
6 | 2 | 5.3333 | (0.4679, 60.7946) |
4 | 3 | 2.2857 | (0.4103, 12.7323) |
5 | 3 | 0.6667 | (0.0514, 8.6389) |
6 | 3 | 1.7778 | (0.2842, 11.1200) |
5 | 4 | 0.2917 | (0.0252, 3.3719) |
6 | 4 | 0.7778 | (0.1464, 4.1326) |
6 | 5 | 2.6667 | (0.2124, 33.4861) |
이 결과에서 범주형 예측 변수는 호텔의 성수기가 시작된 이후의 달입니다. 반응은 투숙객이 예약을 취소하느냐 여부입니다. 이 예에서는 취소가 사건입니다. 최대 승산비는 수준 A가 월 4이고 수준 B가 월 1일 때 약 7.71입니다. 이는 월 4에 투숙객이 예약을 취소할 확률이 월 1에 예약을 취소할 확률보다 약 8배 높다는 것을 나타냅니다.
많은 모형 요약 및 적합도 통계량은 워크시트에서 데이터가 배열되는 방식 및 행당 시행 횟수에 영향을 받습니다. Hosmer-Lemeshow 검정은 데이터가 배열되는 방식에 영향을 받지 않으며 행당 시행 횟수에 관계없이 유사합니다. 자세한 내용은 이항 로지스틱 회귀 분석에서 데이터 형식이 적합도에 미치는 영향에서 확인하십시오.
이탈도 R2이 클수록 모형이 데이터를 더 잘 적합시킵니다. 이탈도 R2은 항상 0%에서 100% 사이입니다.
모형에 항을 추가하면 이탈도 R2은 항상 증가합니다. 예를 들어, 최량 항이 5개인 모형은 최량 항이 4개인 모형보다 항상 R2 값이 큽니다. 따라서 이탈도 R2은 같은 크기의 모형을 비교할 때 가장 유용합니다.
데이터 배열은 이탈도 R2 값에 영향을 미칩니다. 일반적으로 행당 시행 횟수가 여러 번인 데이터에 대한 이탈도 R2이 행당 시행 횟수가 한 번인 데이터보다 큽니다. 이탈도 R2 값은 동일한 데이터 형식을 사용하는 모형 간에만 유사합니다.
적합도 통계량은 모형이 데이터를 얼마나 잘 적합시키는 지에 대한 하나의 측도에 지나지 않습니다. 모형에 바람직한 값이 있더라도 해당 모형이 데이터를 충족하는지 확인하려면 잔차 그림 및 적합도 검정을 확인해야 합니다.
항 수가 다른 여러 모형을 비교하려면 수정 이탈도 R2을 사용하십시오. 모형에 항을 추가하면 이탈도 R2은 항상 증가합니다. 수정 이탈도 R2 값은 모형의 항 수에 통합되어 올바른 모형을 선택하는 데 유용합니다.
여러 모형을 비교하려면 AIC, AICc 및 BIC를 사용합니다. 각 통계량에 대해 작은 값을 사용하는 것이 바람직합니다. 그러나 예측 변수 집합에 대한 값이 가장 작은 모형이 반드시 데이터를 잘 적합시키는 것은 아닙니다. 모형이 데이터를 얼마나 잘 적합시키는지 평가하려면 적합도 검정과 잔차 그림도 사용하십시오.
이탈도 R-Sq | 이탈도 R-Sq(수정) | AIC | AICc | BIC |
---|---|---|---|---|
97.95% | 76.75% | 105.98 | 171.98 | 114.48 |
이 결과에서 모형은 반응 변수에 있는 총 이탈도의 97.95%를 설명합니다. 이러한 데이터의 경우 이탈도 R2 값은 모형이 데이터를 잘 적합시킨다는 것을 나타냅니다. 다른 예측 변수를 사용하여 추가 모형이 적합되는 경우 수정된 이탈도 R2 값, AIC 값, AICc 값 및 BIC 값을 사용하여 모형들이 데이터를 얼마나 잘 적합시키는지 비교하십시오.
편차가 통계적으로 유의한 경우 다른 연결 함수를 사용하거나 모형의 항을 변경할 수 있습니다.
변수 | 값 | 카운트 | 사건 이름 |
---|---|---|---|
부패 | 사건 | 506 | Event |
비사건 | 7482 | ||
용기 | 총계 | 7988 |
검정 | DF | 카이-제곱 | P-값 |
---|---|---|---|
이탈도 | 5 | 0.97 | 0.965 |
Pearson | 5 | 0.97 | 0.965 |
Hosmer-Lemeshow | 6 | 0.10 | 1.000 |
이 결과에서 모든 적합도 검정의 p-값은 일반적인 유의 수준인 0.05보다 높습니다. 검정은 예측 확률이 이항 분포에서 예측하지 않는 방식으로 관측된 확률에서 벗어난다는 증거를 제공하지 않습니다.