총 자유도(DF)는 데이터 내 정보의 양입니다. 분석에서는 해당 정보를 사용하여 계수 값을 추정합니다. 총 DF는 데이터의 행 수보다 1이 작습니다. 항에 대한 DF는 해당 항에서 사용하는 계수의 수를 보여줍니다. 모형에 있는 항의 수를 늘리면 모형에 계수가 추가되어 오차에 대한 DF가 감소합니다. 오차에 대한 DF는 모형에 사용되지 않은 나머지 자유도입니다.
2-수준 요인 설계 또는 Plackett-Burman 설계에서 설계에 중앙점이 있는 경우 하나의 DF는 곡면성 검정을 위한 것입니다. 중앙점에 대한 항이 모형에 있으면 곡면성에 대한 행이 모형의 일부입니다. 중앙점에 대한 항이 모형에 없으면 곡면성에 대한 행이 모형에 있는 항을 검정하기 위해 사용되는 오차의 일부입니다. 반응 표면 및 확정 선별 설계에서는 제곱 항을 추정할 수 있으므로 곡면성 검정이 불필요합니다.
검정에 순차 이탈도를 사용하도록 지정하면 Minitab은 순차 이탈도를 사용하여 회귀 모형과 개별 항에 대한 p-값을 계산합니다. 일반적으로 순차 이탈도 대신 p-값을 해석합니다.
기여는 분산 분석표의 각 출처가 총 순차 이탈도에 기여하는 백분율을 표시합니다.
백분율이 높으면 출처가 반응 변수의 이탈도를 더 많이 설명함을 나타냅니다. 회귀 모형에 대한 백분율 기여는 이탈도 R2와 동일합니다.
수정 이탈도는 모형의 여러 성분에 대한 변동성의 측도입니다. 모형 내 예측 변수의 순서는 수정 이탈도의 계산에 영향을 미치지 않습니다. Minitab은 이탈도를 여러 출처에 의해 설명되는 이탈도를 설명하는 여러 성분으로 나눕니다.
Minitab에서는 항에 대한 p-값을 계산하기 위해 수정 이탈도를 사용합니다. Minitab에서는 또한 이탈도 R2 통계량을 계산하는 데 수정 이탈도를 사용하기도 합니다. 일반적으로 이탈도 대신 p-값과 R2 통계량을 해석합니다.
수정 평균 이탈도는 각 자유도에 대해 항 또는 모형이 이탈도를 얼마나 설명하는지 측정합니다. 각 항에 대한 수정 평균 이탈도 계산에서는 나머지 항이 모두 모형에 있다고 가정합니다.
Minitab에서는 항에 대한 p-값을 계산하기 위해 카이-제곱 값을 사용합니다. 일반적으로 수정 평균 제곱 대신 p-값을 해석합니다.
분산 분석표의 각 항에는 카이-제곱 값이 있습니다. 카이-제곱 값은 항 또는 모형이 반응과 관계가 있는지 결정하는 검정 통계량입니다.
Minitab에서는 카이-제곱 통계량을 사용하여 항과 모형의 통계적 유의성에 대한 결정을 내릴 때 사용하는 p-값을 계산합니다. p-값은 귀무 가설에 반하는 증거를 측정하는 확률입니다. p-값이 작을수록 귀무 가설에 반하는 더 강력한 증거가 됩니다. 카이-제곱 통계량이 충분히 크면 p-값이 작은 결과로 이어지며, 이는 항이나 모형이 통계적으로 유의함을 나타냅니다.
p-값은 귀무 가설에 반하는 증거를 측정하는 확률입니다. p-값이 작을수록 귀무 가설에 반하는 더 강력한 증거가 됩니다.
이탈도 표의 검정은 우도비 검정입니다. 계수 표가 확장된 검정은 Wald 근사 검정입니다. 표본이 작은 경우 우도비 검정이 Wald 근사 검정보다 더 정확합니다.
p-값은 귀무 가설에 반하는 증거를 측정하는 확률입니다. p-값이 작을수록 귀무 가설에 반하는 더 강력한 증거가 됩니다.
분산 분석표의 검정은 우도비 검정입니다. 계수 표가 확장된 검정은 Wald 근사 검정입니다. 표본이 작은 경우 우도비 검정이 Wald 근사 검정보다 더 정확합니다.