변동성 분석의 적합치 및 진단

적합치 및 진단 표의 모든 통계량에 대한 정의 및 해석 방법을 확인해 보십시오.

적합치

적합치는 라고도 합니다. 적합치는 지정된 예측 변수 값에 대한 표준 편차 반응의 점 추정치입니다. 예측 변수의 값은 x-값이라고도 합니다.

해석

적합치는 데이터 집합의 각 관측치에 대한 특정 x-값을 모형 방정식에 입력하여 계산됩니다.

예를 들어, 방정식이 ln (y) = ln (5 + 10x)이면 x-값 2에 대한 적합치는 3.21888(ln(5 + 10(2)))입니다.

적합치가 관측치와 매우 다른 관측치는 비정상적일 수도 있습니다. 예측 변수 값이 비정상적인 관측치는 영향 관측치일 가능성이 있습니다. 데이터에 비정상적이거나 영향력 있는 값이 포함된 것으로 확인되는 경우 이러한 관측치를 식별하는 비정상적 관측치에 대한 적합치 및 진단 표가 결과에 포함됩니다. 표준화 잔차가 큰 관측치는 제시된 회귀 방정식을 잘 따르지 않습니다. 그러나 몇 개의 관측치는 비정상적일 것이라고 예상됩니다. 예를 들어, 큰 표준화 잔차 기준을 토대로 관측치의 약 5%는 큰 표준화 잔차를 가지는 것으로 표시됩니다. 비정상적인 값에 대한 자세한 내용은 비정상적 관측치에서 확인하십시오.

원래 반응에 대한 신뢰 구간(95% CI)

이러한 신뢰 구간(CI)은 모형에 예측 변수 또는 요인의 관측치가 있는 모집단에 대한 표준 편차 반응이 포함될 가능성이 높은 값의 범위입니다.

표본이 랜덤이기 때문에 모집단의 두 표본에서 동일한 신뢰 구간이 생성될 가능성은 없습니다. 그러나 표본을 여러 번 추출하면 일정한 백분율의 신뢰 구간에는 알 수 없는 모집단 모수가 포함됩니다. 모수를 포함하는 이러한 신뢰 구간의 백분율이 해당 구간의 신뢰 수준입니다.

신뢰 구간은 다음 두 부분으로 구성됩니다.
점 추정치
점 추정치는 표본 데이터에서 계산됩니다.
오차 한계
오차 한계는 신뢰 구간의 너비를 정의하며 표본에서 관측된 변동성, 표본 크기 및 신뢰 수준에 의해 결정됩니다.

해석

변수의 관측치에 대한 적합치의 추정치를 평가하려면 신뢰 구간을 사용합니다.

예를 들어, 95% 신뢰 수준에서 신뢰 구간에 모형의 예측 변수 또는 요인의 지정된 값에 대한 모집단 표준 편차가 포함된다고 95% 확신할 수 있습니다. 신뢰 구간은 결과의 실제 유의성을 평가하는 데 도움이 됩니다. 해당 상황에 실제적으로 유의한 값이 신뢰 구간에 포함되는지 여부를 확인하려면 전문 지식을 이용하십시오. 신뢰 구간이 넓으면 미래 값의 표준 편차에 대한 신뢰도가 낮다는 것을 나타냅니다. 신뢰 구간이 너무 넓어서 유의하지 않은 경우에는 표본 크기를 늘려보십시오.

비율 잔차

비율 잔차는 관측된 표준 편차를 적합치로 나눈 값입니다.

Ln(표준 편차)

관측된 반응 표준 편차의 자연 로그입니다.

Ln(적합치)

적합된 표준 편차의 자연 로그입니다.

SE Ln(적합치)

적합 표준 편차의 자연 로그의 표준 오차는 지정된 변수 설정에 대해 추정된 표준 편차의 변동을 추정합니다. 평균 반응의 신뢰 구간 계산에는 적합치의 표준 오차가 사용됩니다. 표준 오차는 항상 음수가 아닙니다.

해석

적합치의 표준 오차를 사용하면 표준 편차의 자연 로그 추정치의 정확도를 측정할 수 있습니다. 표준 오차가 작을수록 추정치의 정확도가 높아집니다.

변환된 반응에 대한 신뢰 구간(95% CI)

이러한 신뢰 구간(CI)은 모형에 예측 변수 또는 요인의 관측치가 있는 모집단에 대한 표준 편차의 자연 로그가 포함될 가능성이 높은 값의 범위입니다.

표본이 랜덤이기 때문에 모집단의 두 표본에서 동일한 신뢰 구간이 생성될 가능성은 없습니다. 그러나 표본을 여러 번 추출하면 일정한 백분율의 신뢰 구간에는 알 수 없는 모집단 모수가 포함됩니다. 모수를 포함하는 이러한 신뢰 구간의 백분율이 해당 구간의 신뢰 수준입니다.

신뢰 구간은 다음 두 부분으로 구성됩니다.
점 추정치
점 추정치는 표본 데이터에서 계산됩니다.
오차 한계
오차 한계는 신뢰 구간의 너비를 정의하며 표본에서 관측된 변동성, 표본 크기 및 신뢰 수준에 의해 결정됩니다.

해석

변수의 관측치에 대한 적합치의 추정치를 평가하려면 신뢰 구간을 사용합니다.

예를 들어, 95% 신뢰 수준에서 신뢰 구간에 모형의 예측 변수 또는 요인의 지정된 값에 대한 모집단 로그 표준 편차가 포함된다고 95% 확신할 수 있습니다. 신뢰 구간은 결과의 실제 유의성을 평가하는 데 도움이 됩니다. 해당 상황에 실제적으로 유의한 값이 신뢰 구간에 포함되는지 여부를 확인하려면 전문 지식을 이용하십시오. 신뢰 구간이 넓으면 미래 값의 표준 편차에 대한 신뢰도가 낮다는 것을 나타냅니다. 신뢰 구간이 너무 넓어서 유의하지 않은 경우에는 표본 크기를 늘려보십시오.

Ln(잔차)

관측된 반응 표준 편차의 자연 로그와 적합된 표준 편차의 자연 로그 사이의 차이입니다. 비율 잔차의 로그입니다.

해석

로그 잔차는 관측된 반응에서 모형으로 설명되지 않는 부분을 나타냅니다. 변동성 분석에서 계산되는 잔차 유형 중 로그 잔차가 정규 잔차와 가장 비슷합니다.

표준화 Ln(잔차)

자연 로그에 대한 표준화 잔차는 로그 잔차를 해당(점근) 표준 오차로 나눈 값입니다.

해석

자연 로그에 대한 표준화 잔차를 사용하면 특이치를 탐지하는 데 도움이 됩니다. 표준화 Ln(잔차) 값은 -2와 2 사이이며 데이터에 비정상적인 관측치가 존재하지 않습니다.

일반적으로 2보다 크거나 -2보다 작은 표준화 잔차는 큰 것으로 간주됩니다. Minitab에서 표시된 관측치는 제시된 회귀 방정식을 잘 따르지 않습니다. 그러나 몇 개의 관측치는 비정상적일 것이라고 예상됩니다. 예를 들어, 큰 표준화 잔차 기준을 토대로 관측치의 약 5%는 큰 표준화 잔차를 가지는 것으로 표시됩니다. 자세한 내용은 비정상적 관측치에서 확인하십시오.

표준화 잔차는 원시 잔차가 특이치를 잘 나타내지 않을 수 있기 때문에 유용합니다. 각 원시 잔차의 분산은 연결된 x-값에 따라 다를 수 있습니다. 이 분산이 동일하지 않아 원시 잔차의 크기를 평가하기 어렵습니다. 잔차를 표준화하면 서로 다른 분산이 공통 척도로 변환되어 이 문제가 해결됩니다.

Hi(레버리지)

Hi(레버리지라고도 함)는 한 관측치의 x-값으로부터 데이터 집합 내 모든 관측치의 평균 x-값까지의 거리를 나타냅니다.

해석

Hi 값은 0과 1 사이입니다. Minitab에서는 레버리지 값이 3p/n과 0.99 중 작은 수보다 큰 관측치를 식별합니다. 이러한 관측치는 비정상 관측치 표에 대한 적합치 및 진단에 X로 표시되어 있습니다. 3p/n에서 p는 모형 내 계수의 수이고 n은 관측치의 수입니다. Minitab에서 'X' 레이블로 표시하는 관측치는 영향 관측치일 가능성이 있습니다.

영향력 있는 관측치는 모형에 불균형적인 영향을 미치며 잘못된 결과를 얻을 수 있습니다. 예를 들어, 영향력 있는 점을 포함하거나 제외함에 따라 계수가 통계적으로 유의하거나 유의하지 않은지 여부가 달라질 수 있습니다. 영향력 있는 관측치는 레버리지 점, 특이치 또는 둘 다일 수 있습니다.

영향력 있는 관측치가 표시되면 관측치가 데이터 입력 오류인지 측정 오류인지 확인합니다. 관측치가 데이터 입력 오류도 아니고 측정 오류도 아니면 관측치의 영향을 확인합니다. 먼저, 관측치를 포함하거나 포함하지 않고 모형을 적합합니다. 그런 다음 계수, p-값, R2 및 기타 모형 정보를 비교합니다. 영향력 있는 관측치를 제거한 경우 모형이 크게 달라지면 모형을 추가로 조사하여 모형을 잘못 지정했는지 확인합니다. 이 문제를 해결하기 위해 데이터를 추가로 수집해야 할 수도 있습니다.

Cook의 거리(D)

Cook의 거리(D)는 관측치가 선형 모형의 계수 집합에 미치는 영향을 측정합니다. Cook의 거리는 레버리지 값과 각 관측치의 표준화 잔차를 모두 고려하여 관측치의 영향을 확인합니다.

해석

D가 큰 관측치는 영향 관측치로 간주할 수 있습니다. 큰 D-값에 대해 일반적으로 사용되는 기준은 D가 F-분포: F(0.5, p, n-p)의 중위수보다 큰 경우입니다(여기서 p는 상수를 포함한 모형 항의 수이며, n는 관측치의 수입니다). D-값을 조사하는 또 하나의 방법은 개별 값 그림과 같은 그래프를 사용하여 서로 비교하는 것입니다. 다른 관측치에 비해 D-값이 큰 관측치는 영향 관측치일 가능성이 있습니다.

영향력 있는 관측치는 모형에 불균형적인 영향을 미치며 잘못된 결과를 얻을 수 있습니다. 예를 들어, 영향력 있는 점을 포함하거나 제외함에 따라 계수가 통계적으로 유의하거나 유의하지 않은지 여부가 달라질 수 있습니다. 영향력 있는 관측치는 레버리지 점, 특이치 또는 둘 다일 수 있습니다.

영향력 있는 관측치가 표시되면 관측치가 데이터 입력 오류인지 측정 오류인지 확인합니다. 관측치가 데이터 입력 오류도 아니고 측정 오류도 아니면 관측치의 영향을 확인합니다. 먼저, 관측치를 포함하거나 포함하지 않고 모형을 적합합니다. 그런 다음 계수, p-값, R2 및 기타 모형 정보를 비교합니다. 영향력 있는 관측치를 제거한 경우 모형이 크게 달라지면 모형을 추가로 조사하여 모형을 잘못 지정했는지 확인합니다. 이 문제를 해결하기 위해 데이터를 추가로 수집해야 할 수도 있습니다.

DFITS

DFITS는 각 관측치가 선형 모형의 적합치에 미치는 영향을 측정합니다. DFITS는 각 관측치를 데이터 집합에서 제거하고 모형을 다시 적합시킬 때 적합치가 변하는 표준 편차의 개수를 대략적으로 나타냅니다.

해석

DFITS 값이 큰 관측치는 영향 관측치일 가능성이 있습니다. 일반적으로 사용되는 큰 DFITS 값에 대한 기준은 DFITS가 다음 값보다 큰지 여부입니다.
용어설명
p모형 항의 수
n관측치 수

영향력 있는 관측치가 표시되면 관측치가 데이터 입력 오류인지 측정 오류인지 확인합니다. 관측치가 데이터 입력 오류도 아니고 측정 오류도 아니면 관측치의 영향을 확인합니다. 먼저 관측치를 포함하거나 포함하지 않고 모형을 적합합니다. 그런 다음 계수, p-값, R2 및 기타 모형 정보를 비교합니다. 영향력 있는 관측치를 제거한 경우 모형이 크게 달라지면 모형을 추가로 조사하여 모형을 잘못 지정했는지 확인합니다. 이 문제를 해결하기 위해 데이터를 추가로 수집해야 할 수도 있습니다.