요인 설계를 위한 이항 반응 분석의 추정된 방정식에 대한 방법 및 공식

원하는 방법 또는 공식을 선택하십시오.
이 내용은 Minitab의 다음 도구에 적용됩니다.
  • 이항 로지스틱 모형 적합
  • 확정 선별 설계를 위한 이항 반응 분석
  • 요인 설계를 위한 이항 반응 분석
  • 반응 표면 설계를 위한 이항 반응 분석

계수

계수의 최대우도 추정치를 구하는 방법은 두 가지입니다. 한 방법은 계수에 대한 우도 함수를 직접 극대화하는 방법입니다. 이 식은 계수에서 비선형입니다. 다른 방법은 Minitab에서 계수 추정치를 구하기 위해 사용하는 방법인 반복 재가중 최소 제곱 방식입니다. McCullagh와 Nelder1는 두 방법이 동등함을 증명합니다. 그러나 반복 재가중 최소 제곱 방법은 이행하기가 더 쉽습니다. 자세한 내용은 1을 참조하십시오.

[1] P. McCullagh and J. A. Nelder (1989). Generalized Linear Models, 2nd Ed., Chapman & Hall/CRC, London.

계수 표준 오차

i번째 계수의 표준 오차는 분산-공분산 행렬의 i번째 대각 요소입니다. 분산-공분산 행렬의 형식은 다음과 같습니다.

W는 대각 요소가 다음 공식에 의해 정해지는 대각 행렬입니다.

설명:

이 분산-공분산 행렬은 Fisher의 정보 행렬이 아닌 관측된 Hessian 행렬에 기반을 두고 있습니다. Minitab에서는 관측된 Hessian 행렬을 사용하는데, 결과로 생성된 모형이 조건적 평균 오규격에 대해 더 로버스트하기 때문입니다.

정규 연결을 사용할 경우 관측된 Hessian 행렬과 Fisher의 정보 행렬은 동일합니다.

표기법

용어설명
yii 번째 행에 대한 반응 값
i 번째 행에 대한 추정 평균 반응
V(·)아래 표에 제공된 분산 함수
g(·)연결 함수
V '(·)분산 함수의 일차 도함수
g'(·)연결 함수의 일차 도함수
g''(·)연결 함수의 이차 도함수
다음 방정식은 이항 모형에 분산 함수를 제공합니다.

자세한 내용은 [1]과 [2]를 참조하십시오.

[1] A. Agresti (1990). Categorical Data Analysis. John Wiley & Sons, Inc.

[2] P. McCullagh and J.A. Nelder (1992). Generalized Linear Model. Chapman & Hall.

Z

Z-통계량은 예측 변수가 반응과 유의한 관련이 있는지 확인하기 위해 사용합니다. Z의 절대값이 상대적으로 크면 관계가 유의함을 나타냅니다. 공식은 다음과 같습니다.

표기법

용어설명
Zi 표준 정규 분포의 검정 통계량
추정 계수
추정 계수의 표준 오차

표본이 작은 경우 우도 비율 검정이 더 신뢰성이 높은 유의도 검정일 수 있습니다. 우도 비율 p-값은 이탈도 표에 있습니다. 표본 크기가 충분히 크면 Z 통계량에 대한 p-값은 우도 비율 통계량에 대한 p-값에 근사합니다.

p-값(P)

귀무 가설을 기각하거나 받아들이는 가설 검정에서 사용됩니다. p-값은 귀무 가설이 참인 경우 최소한 실제로 계산된 값만큼 극단적인 검정 통계량을 얻을 확률입니다. 일반적으로 사용되는 p-값에 대한 컷오프 값은 0.05입니다. 예를 들어, 검정 통계량의 계산된 p-값이 0.05보다 작으면 귀무 가설을 기각합니다.

이항 로지스틱 회귀 분석에 대한 승산비

승산비는 이항 반응이 포함된 모형에 대해 로짓 연결 함수를 선택하는 경우에만 제공됩니다. 이 경우 승산비는 예측 변수와 반응 간의 관계를 해석하는 데 있어 유용합니다.

승산비(τ)는 음수가 아닌 숫자입니다. 승산비 = 1은 비교 기준으로 사용됩니다. τ = 1이면 반응과 예측 변수 간에 연관성이 없습니다. τ < 1이면 요인의 기준 수준(또는 계량형 예측 변수)에 대한 사건의 확률이 더 높습니다. τ > 1이면 요인의 기준 수준(또는 계량형 예측 변수)에 대한 사건의 확률이 더 작습니다. 값이 1에서 멀리 떨어질수록 더 강한 연관도를 나타냅니다.

참고

공변량 또는 요인이 1개인 이항 로지스틱 회귀 모형의 경우 추정된 승산비는 다음과 같습니다.

지수 관계는 β에 대한 해석을 제공합니다. x가 한 단위 증가할 때마다 확률이 eβ1씩 증가합니다. 승산비는 exp(β1)와 같습니다.

예를 들어, β가 0.75인 경우 승산비는 exp(0.75) = 2.11입니다. 이는 x가 한 단위 증가할 때마다 승산비가 111% 증가한다는 것을 나타냅니다.

표기법

용어설명
데이터의 i번째 행에 대해 추정된 성공 확률
추정된 절편 계수
예측 변수 x에 대해 추정된 계수
i번째 행에 대한 데이터 점

신뢰 구간

추정 계수의 큰 표본 신뢰 구간은 다음과 같습니다.

이항 로지스틱 회귀 분석의 경우, Minitab은 승산비에 대한 신뢰 구간을 제공합니다. 승산비의 신뢰 구간을 구하려면 신뢰 구간의 하한 및 상한을 멱승하십시오. 신뢰 구간은 예측 변수의 모든 단위 변동에 대해 승산비가 하락할 수 있는 범위를 정합니다.

표기법

용어설명
i 번째 계수
에서 표준 정규 분포의 역 누적 확률
유의 수준
추정 계수의 표준 오차

분산-공분산 행렬

d가 예측 변수의 수 더하기 1인 d x d 행렬. 각 계수의 분산은 대각 셀에 있고 각 계수 쌍의 공분산은 해당 대각 외 셀에 있습니다. 분산은 계수 제곱의 표준 오차입니다.

분산-공분산 행렬은 정보 행렬의 역행렬의 마지막 반복에서 나옵니다. 분산-공분산 행렬의 형식은 다음과 같습니다.

W는 대각 요소가 다음 공식에 의해 정해지는 대각 행렬입니다.

설명:

이 분산-공분산 행렬은 Fisher의 정보 행렬이 아닌 관측된 Hessian 행렬에 기반을 두고 있습니다. Minitab에서는 관측된 Hessian 행렬을 사용하는데, 결과로 생성된 모형이 조건적 평균 오규격에 대해 더 로버스트하기 때문입니다.

정규 연결을 사용할 경우 관측된 Hessian 행렬과 Fisher의 정보 행렬은 동일합니다.

표기법

용어설명
yi i 번째 행에 대한 반응 값
i 번째 행에 대한 추정 평균 반응
V(·)아래 표에 제공된 분산 함수
g(·)연결 함수
V '(·)분산 함수의 일차 도함수
g'(·)연결 함수의 일차 도함수
g''(·)연결 함수의 이차 도함수
다음 방정식은 이항 모형에 분산 함수를 제공합니다.

자세한 내용은 [1]과 [2]를 참조하십시오.

[1] A. Agresti (1990). Categorical Data Analysis. John Wiley & Sons, Inc.

[2] P. McCullagh and J.A. Nelder (1992). Generalized Linear Model. Chapman & Hall.