S는 오차 항의 추정된 표준 편차입니다. S의 값이 작을수록 조건부 적합 방정식이 선택된 요인 설정에서의 반응을 더 잘 설명합니다. 그러나 S 값 자체는 모형의 적합성을 완전히 설명하지 않습니다. 다른 표 및 잔차 그림의 주요 결과도 조사하십시오.
R2은 모형에 의해 설명되는 반응 내 변동의 백분율입니다. 이 값은 1 빼기 오차 제곱합(모형에 의해 설명되지 않는 변동) 대 총 제곱합(모형 내 총 변동)의 비율입니다.
모형이 데이터를 얼마나 잘 적합시키는지 확인하려면 R2을 사용합니다. R2 값이 클수록 반응 값의 더 많은 변동이 모형에 의해 설명됩니다. R2은 항상 0%에서 100% 사이입니다.
모형의 공분산 구조가 같다고 가정할 경우 고정 요인이나 공변량을 추가하면 R2이 증가합니다. 따라서 R2은 같은 크기의 모형을 비교할 때 가장 유용합니다.
작은 표본은 반응과 예측 변수 간 관계의 강도에 대한 정확한 추정치를 제공하지 않습니다. 예를 들어, 더 정확한 R2이 필요하면 더 큰 표본을 사용해야 합니다(일반적으로 40 이상).
적합도 통계량은 모형이 데이터를 얼마나 잘 적합시키는 지에 대한 하나의 측도에 지나지 않습니다. 모형에 바람직한 값이 있더라도 해당 모형이 모형 가정을 충족하는지 확인하려면 잔차 그림을 확인해야 합니다.
공분산 구조는 같지만 고정 요인 및 공변량의 수가 다른 모형을 비교하려면 수정 R2을 사용하십시오. 모형의 공분산 구조가 같다고 가정할 경우 고정 요인이나 공변량을 추가하면 R2이 증가합니다. 수정 R2 값은 모형의 고정 요인 및 공변량 수에 통합되어 올바른 모형을 선택하는 데 도움이 됩니다.
교정된 AICc(Akaike Information Criterion) 및 BIC(Bayesian Information Criterion)는 모형의 적합치와 항 수를 설명하는 모형의 상대적 품질 측도입니다.
여러 모형을 비교하려면 AICc 및 BIC를 사용합니다. 작은 값을 사용하는 것이 바람직합니다. 그러나 예측 변수 집합에 대한 값이 가장 작은 모형이 반드시 데이터를 잘 적합시키는 것은 아닙니다. 또한 검정과 잔차 그림을 사용하여 모형이 데이터를 얼마나 잘 적합시키는지 평가하십시오.
AICc와 BIC 모두 모형의 우도를 평가한 다음 모형에 항을 추가하는 데 대한 벌칙을 적용합니다. 벌칙은 모형을 표본데이터에 과다 적합하는 경향을 줄입니다. 이에 따라 일반적으로 더 잘 수행되는 모형이 생성됩니다.
일반 지침에 따라, 모수 수가 표본 크기에 비해 작은 경우 AICc보다 BIC가 각 모수의 추가에 대한 벌칙이 더 큽니다. 이러한 경우 BIC를 최소화하는 모형이 AICc를 최소화하는 모형보다 더 작은 경향이 있습니다.
선별 설계와 같은 몇 가지 일반적인 경우, 모수의 수가 일반적으로 표본 크기에 비해 큽니다. 이러한 경우 AICc를 최소화하는 모형이 BIC를 최소화하는 모형보다 더 작은 경향이 있습니다. 예를 들어, 13-런 확정 선별 설계의 경우 모수가 6개 이상인 모형의 집합 중에서 AICc를 최소화하는 모형이 BIC를 최소화하는 모형보다 더 작은 경향이 있습니다.
AICc 및 BIC에 대한 자세한 내용은 Burnham and Anderson.1