전체 자유도(DF)는 데이터의 정보 양입니다. 분석에서는 이 정보를 사용하여 알려져 있지 않은 모집단 모수의 값을 추정합니다. 전체 DF는 표본의 관측치 수로 결정됩니다. 항의 DF는 해당 항에서 사용하는 정보의 양을 보여줍니다. 표본 크기를 증가시키면 모집단에 대한 더 많은 정보가 제공되므로, 전체 DF가 증가합니다. 모형의 항 수를 증가시키면 더 많은 정보를 사용하며, 모수 추정치의 변동성을 추정하기 위해 사용할 수 있는 DF가 감소합니다.
수정 제곱합은 모형의 여러 성분에 대한 변동성의 측도입니다. 모형 내 예측 변수의 순서는 수정 제곱합의 계산에 영향을 미치지 않습니다. 분산 분석표에서 Minitab은 제곱합을 여러 요인으로 인한 변동을 설명하는 여러 성분으로 나눕니다.
Minitab에서는 항에 대한 p-값을 계산하기 위해 수정 제곱합을 사용합니다. Minitab에서는 R2 통계량을 계산하기 위해서도 제곱합을 사용합니다. 일반적으로 제곱합 대신 p-값과 R2 통계량을 해석합니다.
수정 평균 제곱(MS)은 다른 모든 항이 모형에 있다는 가정 하에 항이 입력된 순서에 관계없이 항 또는 모형이 설명하는 변동의 정도를 측정합니다. 수정 제곱합과 달리 수정 평균 제곱에서는 자유도를 고려합니다.
오차의 수정 평균 제곱(MSE 또는 s2이라고도 함)은 적합치 주변의 분산입니다.
Minitab에서는 항에 대한 p-값을 계산하기 위해 수정 평균 제곱을 사용합니다. Minitab에서는 또한 수정 R2 통계량을 계산하기 위해 수정 평균 제곱을 사용합니다. 일반적으로 수정 평균 제곱 대신 p-값과 수정 R2 통계량을 해석합니다.
분산 분석표에 각 항에 대한 F-값이 표시됩니다. F-값은 항이 반응과 연관되어 있는지 확인하기 위해 사용하는 검정 통계량입니다.
Minitab에서는 F-값을 사용하여 항과 모형의 통계적 유의성에 대한 결정을 내릴 때 사용하는 p-값을 계산합니다. p-값은 귀무 가설에 반하는 증거를 측정하는 확률입니다. p-값이 작을수록 귀무 가설에 반하는 더 강력한 증거가 됩니다.
F-값이 충분히 크면 항이나 모형이 유의하다는 것을 나타냅니다.
F-값을 사용하여 귀무 가설의 기각 여부를 확인하려면 F-값을 임계값과 비교하십시오. Minitab에서 임계값을 계산하거나 대부분의 통계 서적에 있는 F-분포 표에서 임계값을 찾을 수 있습니다. Minitab을 사용한 임계값 계산에 대한 자세한 내용을 보려면 역 누적분포함수(ICDF) 사용에서 "ICDF를 사용하여 임계값 계산"을 클릭하십시오.
p-값은 귀무 가설에 반하는 증거를 측정하는 확률입니다. p-값이 작을수록 귀무 가설에 반하는 더 강력한 증거가 됩니다.
평균 표를 사용하면 데이터의 요인 수준 간의 통계적으로 유의한 차이를 파악할 수 있습니다. 각 그룹의 평균은 각 모평균의 추정치를 제공합니다. 통계적으로 유의한 항에 대한 그룹 평균 간의 차이를 찾아보십시오.