균형 분산 분석에 대한 분산 분석표

분산 분석표의 모든 통계량에 대한 정의 및 해석을 확인해 보십시오.

DF

전체 자유도(DF)는 데이터의 정보 양입니다. 분석에서는 이 정보를 사용하여 알려져 있지 않은 모집단 모수의 값을 추정합니다. 전체 DF는 표본의 관측치 수로 결정됩니다. 항의 DF는 해당 항에서 사용하는 정보의 양을 보여줍니다. 표본 크기를 증가시키면 모집단에 대한 더 많은 정보가 제공되므로, 전체 DF가 증가합니다. 모형의 항 수를 증가시키면 더 많은 정보를 사용하며, 모수 추정치의 변동성을 추정하기 위해 사용할 수 있는 DF가 감소합니다.

SS

수정 제곱합은 모형의 여러 성분에 대한 변동성의 측도입니다. 모형 내 예측 변수의 순서는 수정 제곱합의 계산에 영향을 미치지 않습니다. 분산 분석표에서 Minitab은 제곱합을 여러 요인으로 인한 변동을 설명하는 여러 성분으로 나눕니다.

Adj SS 항
항에 대한 수정 제곱합은 다른 항만 있는 모형에 비해 회귀 제곱합에서 증가합니다. 이 값은 모형의 각 항으로 설명하는 반응 데이터의 변동량을 나타냅니다.
Adj SS 오차
오차 제곱합은 잔차 제곱의 합입니다. 이 값은 예측 변수가 설명하지 않는 데이터의 변동량을 나타냅니다.
Adj SS 전체
총 제곱합은 항 제곱합과 오차 제곱합의 합입니다. 이것은 데이터의 총 변동량을 나타냅니다.

해석

Minitab에서는 항에 대한 p-값을 계산하기 위해 수정 제곱합을 사용합니다. Minitab에서는 R2 통계량을 계산하기 위해서도 제곱합을 사용합니다. 일반적으로 제곱합 대신 p-값과 R2 통계량을 해석합니다.

MS

수정 평균 제곱(MS)은 다른 모든 항이 모형에 있다는 가정 하에 항이 입력된 순서에 관계없이 항 또는 모형이 설명하는 변동의 정도를 측정합니다. 수정 제곱합과 달리 수정 평균 제곱에서는 자유도를 고려합니다.

오차의 수정 평균 제곱(MSE 또는 s2이라고도 함)은 적합치 주변의 분산입니다.

해석

Minitab에서는 항에 대한 p-값을 계산하기 위해 수정 평균 제곱을 사용합니다. Minitab에서는 또한 수정 R2 통계량을 계산하기 위해 수정 평균 제곱을 사용합니다. 일반적으로 수정 평균 제곱 대신 p-값과 수정 R2 통계량을 해석합니다.

F-값

분산 분석표에 각 항에 대한 F-값이 표시됩니다. F-값은 항이 반응과 연관되어 있는지 확인하기 위해 사용하는 검정 통계량입니다.

해석

Minitab에서는 F-값을 사용하여 항과 모형의 통계적 유의성에 대한 결정을 내릴 때 사용하는 p-값을 계산합니다. p-값은 귀무 가설에 반하는 증거를 측정하는 확률입니다. p-값이 작을수록 귀무 가설에 반하는 더 강력한 증거가 됩니다.

F-값이 충분히 크면 항이나 모형이 유의하다는 것을 나타냅니다.

F-값을 사용하여 귀무 가설의 기각 여부를 확인하려면 F-값을 임계값과 비교하십시오. Minitab에서 임계값을 계산하거나 대부분의 통계 서적에 있는 F-분포 표에서 임계값을 찾을 수 있습니다. Minitab을 사용한 임계값 계산에 대한 자세한 내용을 보려면 역 누적분포함수(ICDF) 사용에서 "ICDF를 사용하여 임계값 계산"을 클릭하십시오.

P-값 - 항

p-값은 귀무 가설에 반하는 증거를 측정하는 확률입니다. p-값이 작을수록 귀무 가설에 반하는 더 강력한 증거가 됩니다.

해석

반응과 모형의 각 항 간의 연관성이 통계적으로 유의한지 여부를 확인하려면 항에 대한 p-값을 유의 수준과 비교하여 귀무 가설을 평가합니다. 귀무 가설은 항과 반응 간에 연관성이 없다는 것입니다. 일반적으로 0.05의 유의 수준(α 또는 알파로 표시함)이 적절합니다. 0.05의 유의 수준은 실제로 연관성이 없는데 연관성이 존재한다는 결론을 내릴 위험이 5%라는 것을 나타냅니다.
p-값 ≤ α: 연관성이 통계적으로 유의합니다.
p-값이 유의 수준보다 작거나 같으면 반응 변수와 항 간에 통계적으로 유의한 연관성이 있다는 결론을 내릴 수 있습니다.
p-값 > α: 연관성이 통계적으로 유의하지 않습니다.
p-값이 유의 수준보다 크면 반응 변수와 항 간에 통계적으로 유의한 연관성이 있다는 결론을 내릴 수 없습니다. 항 없이 모형을 다시 적합시킬 수도 있습니다.
반응과 통계적으로 유의한 연관성이 없는 예측 변수가 여러 개 있는 경우 한 번에 하나씩 항을 줄여 모형을 축소할 수 있습니다. 모형에서 항을 제거하는 방법은 모형 축소에서 확인하십시오.
Minitab의 이 분석에서는 모형이 계층적이어야 합니다. 계층적 모형에서는 높은 차수의 항을 구성하는 모든 낮은 차수의 항이 모형에 표시됩니다. 예를 들어, 교호작용 항 A*B*C가 포함된 항은 A, B, C, A*B, A*C, B*C 항이 포함된 경우 계층적입니다.
모형 항이 통계적으로 유의하면 해석은 항의 유형에 따라 다릅니다. 해석은 다음과 같습니다.
  • 고정 요인이 유의하면 일부 수준 평균이 같지 않다는 결론을 내릴 수 있습니다.
  • 변량 요인이 유의하면 요인이 반응의 변동에 기여한다는 결론을 내릴 수 있습니다.
  • 교호작용 항이 유의하면 요인과 반응의 관계가 항의 다른 요인에 따라 다릅니다. 이 경우에는 교호작용 효과를 고려하지 않고 주효과를 해석해서는 안 됩니다.

평균 표를 사용하면 데이터의 요인 수준 간의 통계적으로 유의한 차이를 파악할 수 있습니다. 각 그룹의 평균은 각 모평균의 추정치를 제공합니다. 통계적으로 유의한 항에 대한 그룹 평균 간의 차이를 찾아보십시오.