Box-Cox 변환은 다음 표에 표시된 대로 표준화된 변환 변수의 표준 편차를 최소화하는 람다 값을 추정합니다. 결과 변환은 λ ҂ 0일 때 Yλ, λ = 0일 때 ln Y입니다.
Box-Cox 방법은 여러 유형의 변환을 검색합니다. 다음 표에는 Y'가 데이터 Y의 변환인 몇 가지 일반적인 변환이 나와 있습니다.
람다(λ) 값 | 변환 |
---|---|
Johnson 변환은 세 종류의 분포 중에서 최적인 분포를 선택하여 데이터가 정규 분포를 따르도록 변환합니다.
Johnson 모임 | 변환 함수 | 범위 |
---|---|---|
SB | γ + η ln [(x – ε) / (λ + ε – x)] | η, λ > 0, –∞ < γ < ∞ , –∞ < ε < ∞, ε < x < ε + λ |
SL | γ + η ln (x – ε) | η > 0, –∞ < γ < ∞, –∞ < ε < ∞, ε < x |
SU | γ + η Sinh–1 [(x – ε) / λ] , 여기서
Sinh–1(x) = ln [x + sqrt (1 + x2)] |
η, λ > 0, –∞ < γ < ∞, –∞ < ε < ∞, –∞ < x < ∞ |
이 알고리즘에서는 다음 절차를 사용합니다.
용어 | 설명 |
---|---|
SB | 경계 있는 변수의 Johnson 모임 분포(B) |
SL | 대수 정규 변수의 Johnson 모임 분포(L) |
SU | 경계 없는 변수의 Johnson 모임 분포(U) |
Johnson 변환에 대한 자세한 내용은 Chou, et al1에서 확인하십시오. Minitab에서는 해당 텍스트에 사용되는 Shapiro-Wilks 정규성 텍스트를 Anderson-Darling 텍스트로 바꿉니다.
확률도, 백분위수 및 신뢰 구간에 대한 내용은 개별 분포 식별의 분포에 대한 방법 및 공식에서 확인하십시오.