표본 크기(N)는 원래 표본의 총 관측치 수입니다. Minitab에서는 이 표본 크기의 재표본을 추출하여 부트스트랩 표본을 구성합니다.
평균은 모든 관측치의 합을 관측치 수로 나눈 데이터의 평균입니다.
표준 편차는 산포, 즉 데이터가 평균을 중심으로 퍼져 있는 정도를 나타내는 가장 일반적인 측도입니다. 모집단의 표준 편차를 나타내는 데는 σ(시그마) 기호를 자주 사용하는 반면, 표본의 표준 편차를 사용하는 데는 s를 사용합니다. 랜덤이 아니거나 공정에 자연스럽지 못한 변동은 종종 잡음이라고 합니다.
표준 편차는 데이터와 단위가 같기 때문에 일반적으로 분산보다 더 쉽게 해석할 수 있습니다.
데이터가 평균을 중심으로 퍼져 있는 정도를 확인하려면 표준 편차를 사용합니다. 표준 편차 값이 클수록 데이터가 더 퍼져 있다는 것을 나타냅니다. 정규 분포에 대한 일반 규칙은 대략 68%의 값이 평균으로부터 1 표준 편차 거리 내에 있고, 95%의 값이 2 표준 편차 거리 내에 있고, 99.7%의 값이 3 표준 편차 거리 내에 있다는 것입니다.
분산은 데이터가 평균 주위에 분산된 정도를 측정합니다. 분산은 표준 편차의 제곱과 같습니다.
분산이 클수록 데이터의 범위가 더 커집니다.
분산(σ2)은 제곱된 양으로, 단위도 제곱되기 때문에 실제로 사용하기 어려울 수도 있습니다. 표준 편차는 데이터와 단위가 같기 때문에 일반적으로 더 쉽게 해석할 수 있습니다. 예를 들어, 버스 정류장에서 대기 시간의 표본을 추출한 결과 평균이 15분이고 분산은 9분2입니다. 분산은 데이터와 단위가 같지 않기 때문에 보통 제곱근(표준 편차)으로 표시됩니다. 9분2의 분산은 3분의 표준 편차와 동일합니다.
합은 모든 데이터 값의 합입니다. 합은 또한 평균, 표준 편차 등 통계 계산에도 사용됩니다.
최소값은 가장 작은 데이터 값입니다.
이 데이터에서 최소값은 7입니다.
13 | 17 | 18 | 19 | 12 | 10 | 7 | 9 | 14 |
가능한 특이치 또는 데이터 입력 오류를 식별하려면 최소값을 사용합니다. 데이터의 산포를 평가하는 가장 간단한 방법은 최소값과 최대값을 비교하는 것입니다. 최소값이 아주 작은 경우에는 데이터의 중심, 산포, 모양 외에 극단값의 원인도 조사하십시오.
중위수는 데이터 집합의 중간점입니다. 중간점 값은 관측치의 반이 이 값보다 크고 관측치의 반이 이 값보다 작은 점입니다. 중위수는 관측치에 순위를 매기고 순위가 [N + 1] / 2인 관측치를 찾는 방법으로 결정됩니다. 관측치의 수가 짝수이면 순위가 N / 2인 관측치와 순위가 [N / 2] + 1인 관측치의 평균 값이 중위수입니다.
최대값은 가장 큰 데이터 값입니다.
이 데이터에서 최대값은 19입니다.
13 | 17 | 18 | 19 | 12 | 10 | 7 | 9 | 14 |
가능한 특이치 또는 데이터 입력 오류를 식별하려면 최대값을 사용합니다. 데이터의 산포를 평가하는 가장 간단한 방법은 최소값과 최대값을 비교하는 것입니다. 최대값이 아주 큰 경우에는 데이터의 중심, 산포, 모양 외에 극단값의 원인도 조사하십시오.