1-표본 평균에 대한 랜덤화 검정에 대한 데이터 고려사항

유효한 결과를 얻으려면 데이터를 수집하고 분석을 수행하거나 결과를 해석할 때 다음 지침을 따르십시오.

데이터가 계량형(예: 포장의 무게)이어야 합니다.
계량형 데이터에는 두 값 사이에 무한한 개수의 값이 있습니다.
데이터의 각 관측치가 두 범주(통과/실패) 중 하나로 분류되면 1-표본 비율에 대한 랜덤화 검정을 사용하십시오. 데이터 유형에 대한 자세한 내용을 확인하려면 가설 검정으로 분석할 수 있는 데이터 유형으로 이동하십시오.
표본 데이터는 랜덤하게 선택해야 합니다.
통계에서 랜덤 표본은 모집단에 대한 일반화 또는 추론을 작성하기 위해 사용됩니다. 데이터가 랜덤하게 수집되지 않은 경우에는 결과가 모집단을 나타내지 않을 수 있습니다. 자세한 내용을 확인하려면 데이터 표본의 랜덤성으로 이동하십시오.
각 관측치가 다른 모든 관측치로부터 독립적이어야 함
관측치가 독립적이려면 특정 관측 값이 이전 관측에 종속되지 않아야 합니다. 관측치가 독립적이 아니면 결과가 유효하지 않을 수도 있습니다. 자세한 내용을 확인하려면 종속 및 독립 표본의 차이로 이동하십시오.
표본 크기는 작아야 합니다.
표본 크기가 작은 경우 표본 재추출 결과를 신뢰할 수 없을 수도 있습니다. 유효한 결과를 얻으려면 중간 규모에서 대규모의 데이터 표본을 수집해야 합니다. 적절한 표본 크기는 데이터 특성에 따라 다릅니다. 표본 크기가 충분히 큰지 여부를 판단하려면 히스토그램을 사용하십시오.
이 사이트를 사용하면 분석 및 사용자 개인 컨텐츠에 대한 쿠키 사용에 동의하는 것입니다.  당사의 개인정보 보호정책을 확인하십시오