단일 표본 분산에 대한 검정력 및 표본 크기에 대한 모든 통계량 및 그래프 해석

단일 표본 분산에 대한 검정력 및 표본 크기와 함께 제공되는 모든 통계량 및 그래프에 대한 정의 및 해석 방법을 확인해 보십시오.

α(알파)

유의 수준(알파 또는 α로 표기됨)은 귀무 가설이 참일 때 귀무 가설을 기각할 위험(제1종 오류)의 최대 허용 수준입니다. 알파는 귀무 가설(H0)이 참일 때 검정의 검정력으로도 해석됩니다. 일반적으로 데이터를 분석하기 전에 유의 수준을 선택합니다. 기본 유의 수준은 0.05입니다.

해석

귀무 가설(H0)이 참일 때 검정의 검정력 값을 최소화하려면 유의 수준을 사용합니다. 유의 수준의 값이 높을수록 검정력이 크지만, 귀무 가설이 참일 때 귀무 가설을 기각하는 제1종 오류를 범할 확률이 증가합니다.

비율

이 값은 비교 표준 편차 또는 분산과 귀무 가설에서의 값 간의 비율입니다.

해석

Minitab에서 지정된 검정력과 표본 크기를 기반으로 탐지할 수 있는 가장 작은 비율을 계산합니다. 표본 크기가 클수록 더 작은 비율을 탐지할 수 있습니다. 현재 연구에서 실제적인 결과가 있는 가장 작은 비율을 탐지하려고 합니다.

지정된 검정력에서 표본 크기와 비율 간의 관계를 더 자세히 조사하려면 검정력 곡선을 사용하십시오.

표본 크기

표본 크기는 표본의 총 관측치 수입니다.

해석

특정 차이에서 가설 검정에 대한 검정력을 얻기 위해 필요한 관측치의 수를 추정하려면 표본 크기를 사용합니다.

Minitab에서는 검정에서 지정된 검정력을 사용하여 지정된 비율을 탐지하기 위해 필요한 표본 크기를 계산합니다. 표본 크기가 정수이므로 검정의 실제 검정력은 사용자가 지정하는 검정력 값보다 약간 클 수도 있습니다.

표본 크기를 늘리면 검정력도 증가합니다. 적절한 검정력을 달성하기 위해서는 표본에 충분한 관측치가 필요합니다. 그러나 표본 크기가 불필요한 표본 추출에 비용과 시간을 소비하거나 통계적으로 유의하지 않은 차이를 탐지해야 할 정도로 크지 않아야 합니다.

지정된 검정력에서 표본 크기와 차이 간의 관계를 더 자세히 조사하려면 검정력 곡선을 사용하십시오.

검정력

가설 검정의 검정력은 검정이 귀무 가설을 올바르게 기각하는 확률입니다. 가설 검정의 검정력은 표본 크기, 차이, 데이터의 변동성 및 검정 유의 수준의 영향을 받습니다.

자세한 내용은 검정력의 정의에서 확인하십시오.

해석

Minitab에서는 지정된 비율과 표본 크기를 기반으로 검정력을 계산합니다. 일반적으로 0.9의 검정력 값이 적절한 것으로 간주됩니다. 0.9의 값은 실제로 차이가 존재할 때 모집단 표준 편차 또는 분산과 귀무 가설에서의 표준 편차 또는 분산 간의 차이를 탐지할 확률이 90%라는 것을 나타냅니다. 검정력이 낮으면 차이를 탐지하지 못하고 차이가 없다는 잘못된 결론을 내릴 수 있습니다. 일반적으로 표본 크기가 더 작거나 비율이 1에 더 가까운 경우 검정에서 차이를 탐지할 검정력이 더 낮습니다.

검정에 대한 차이와 검정력 값을 입력하면 Minitab에서 표본 크기를 계산합니다. Minitab에서는 또한 해당 표본 크기에 대한 검정의 실제 검정력을 계산합니다. 표본 크기가 정수이므로 검정의 실제 검정력은 사용자가 지정하는 검정력 값보다 약간 클 수도 있습니다.

참고

기초통계에서 단일 표본 분산 검정을 수행하는 경우 Minitab에서는 카이-제곱 방법 및 Bonett 방법에 대한 출력을 모두 표시합니다. 그러나 단일 표본 분산에 대한 검정력 및 표본 크기을 수행하는 경우 카이-제곱 방법만 사용합니다.

검정력 곡선

검정력 곡선은 검정력 대 비율을 표시합니다.

해석

검정에 적절한 표본 크기 또는 검정력을 평가하려면 검정력 곡선을 사용합니다.

검정력 곡선은 유의 수준이 일정하게 유지되는 경우 각 표본 크기에 대한 검정력과 비율의 모든 조합을 나타냅니다. 검정력 곡선의 각 기호는 사용자가 입력하는 값을 기준으로 계산된 값을 나타냅니다. 예를 들어, 표본 크기와 검정력 값을 입력하면 Minitab에서 해당하는 비율을 계산하고 계산된 값을 그래프에 표시합니다.

곡선의 값을 조사하여 특정한 검정력 값과 표본 크기에서 탐지할 수 있는 비율을 확인합니다. 일반적으로 0.9의 검정력 값이 적절한 것으로 간주됩니다. 그러나 일부 실무자들은 0.8의 검정력 값이 적절하다고 생각합니다. 가설 검정의 검정력이 낮은 경우 실제적으로 유의한 비율을 탐지하지 못할 수도 있습니다. 표본 크기를 늘리면 검정력도 증가합니다. 적절한 검정력을 달성하기 위해서는 표본에 충분한 관측치가 필요합니다. 그러나 표본 크기가 불필요한 표본 추출에 비용과 시간을 소비하거나 통계적으로 유의하지 않은 차이를 탐지해야 할 정도로 크지 않아야 합니다. 탐지하려는 비율의 크기를 줄이면 검정력도 감소합니다.

참고

기초통계에서 단일 표본 분산 검정을 수행하는 경우 Minitab에서는 카이-제곱 방법 및 Bonett 방법에 대한 출력을 모두 표시합니다. 그러나 단일 표본 분산에 대한 검정력 및 표본 크기을 수행하는 경우 카이-제곱 방법만 사용합니다.

이 그래프에서 표본 크기 50에 대한 검정력 곡선은 비율 0.8에 대한 검정력이 약 0.54라는 것을 보여줍니다. 표본 크기가 100인 경우 검정력 곡선은 비율 0.8에 대한 검정력이 약 0.87이라는 것을 보여줍니다. 상황에 적절한 검정력이 0.87인 경우 크기가 100인 표본을 수집해야 합니다. 0.8보다 작은 비율을 탐지해야 하는 경우에는 더 큰 표본을 수집해야 합니다.

이 사이트를 사용하면 분석 및 사용자 개인 컨텐츠에 대한 쿠키 사용에 동의하는 것입니다.  당사의 개인정보 보호정책을 확인하십시오