ARIMA와 함께 제공되는 모든 그래프에 대한 정의 및 해석 방법을 확인해 보십시오.

시계열도

시계열도는 데이터를 연대순으로 표시합니다. 예측값을 생성할 때 Minitab에서는 예측값 및 예측값의 95% 신뢰 한계를 그래프에 표시합니다.

해석

시계열도를 사용하면 데이터가 정상 데이터인지 확인할 수 있습니다. 정상 시계열의 평균, 분산 및 자기 상관 함수는 본질적으로 전체 시간 동안 일정합니다. 다음 내용을 확인하려면 시계열도를 조사하십시오.
  • 데이터에 여러 변동이 있는지 여부 확인. 여러 변동이 있는 경우 분산이 일정하도록 데이터를 변환해야 합니다.
  • 데이터가 일정한 평균을 중심으로 모여 있는지 여부 확인. 평균이 일정하지 않은 경우 평균을 일정하게 만들기 위해 데이터를 구별해야 할 수도 있습니다.

잔차 ACF

그림은 잔차의 자기상관함수를 보여줍니다. 자기상관함수는 k 시간 단위로 구분된 시계열의 관측치(yt 및 yt–k) 간 상관의 측도입니다.

해석

잔차의 자기상관함수를 사용하면 모형이 잔차가 서로 독립적이라는 가정을 충족하는지 여부를 확인할 수 있습니다. 가정이 충족되지 않으면 모형이 데이터에 적합하지 않은 것이므로 결과를 해석할 때 주의해야 합니다. 유의한 상관 관계가 존재하지 않으면 잔차가 서로 독립적이라는 결론을 내릴 수 있습니다. 그러나 계절적 시차가 아닌 고차 항 시차에서 1개 또는 2개의 유의한 상관이 있을 수 있습니다. 이 시차는 일반적으로 랜덤 오차로 인한 것이며 가정이 충족되지 않는다는 징후는 아닙니다. 따라서 이 경우에도 잔차가 서로 독립적이라는 결론을 내릴 수 있습니다.

잔차 PACF

편 자기 상관 함수는 존재하는 기타 모든 짧은 시차 항에 따라 조정한 후 k 시간 단위로 구분된 시계열(yt–1, yt–2, ..., yt–k–1)의 관측치(yt 및 yt–k) 간 상관의 측도입니다.

해석

잔차의 편 자기 상관 함수를 사용하면 모형이 잔차가 서로 독립적이라는 가정을 충족하는지 여부를 확인할 수 있습니다. 가정이 충족되지 않으면 모형이 데이터에 적합하지 않은 것이므로 결과를 해석할 때 주의해야 합니다. 유의한 상관 관계가 존재하지 않으면 잔차가 서로 독립적이라는 결론을 내릴 수 있습니다.

잔차의 히스토그램

잔차의 히스토그램은 모든 관측치에 대한 잔차의 분포를 보여줍니다. 모형이 데이터를 잘 적합시키는 경우, 잔차가 0을 평균으로 랜덤하게 분포해야 합니다. 따라서 히스토그램이 0을 중심으로 거의 대칭이어야 합니다.

잔차의 정규 확률도

잔차의 정규 확률도는 분포가 정규 분포일 때 잔차 대 잔차의 기대값을 표시합니다.

해석

잔차의 정규 확률도를 사용하면 잔차가 정규 분포를 따르는지 여부를 확인할 수 있습니다. 그러나 이 분석에서는 잔차가 정규 분포를 따르지 않아도 됩니다.

잔차가 정규 분포를 따르는 경우, 잔차의 정규 확률도는 대략 직선을 따라야 합니다. 다음 패턴은 잔차가 정규 분포를 따르지 않는다는 것을 의미합니다.

S-곡선은 긴 꼬리를 갖는 분포를 의미합니다.

역 S-곡선은 짧은 꼬리를 갖는 분포를 의미합니다.

하향 곡선은 오른쪽으로 치우친 분포를 의미합니다.

선으로부터 멀리 떨어져 있는 몇 개의 점은 특이치를 갖는 분포를 암시합니다.

잔차 대 적합치

잔차 대 적합치 그림은 y-축에 잔차, x-축에 적합치를 표시합니다.

해석

잔차 대 적합치 그림을 사용하면 잔차가 치우치지 않고 분산이 일정한지 여부를 확인할 수 있습니다. 이상적으로는 점들이 식별 가능한 패턴 없이 0의 양쪽에 랜덤하게 분포해야 합니다.

다음 표의 패턴은 잔차가 치우쳐 있으며 잔차에 일정하지 않은 분산이 있다는 것을 나타낼 수도 있습니다.
패턴 패턴이 나타내는 내용
적합치에 대해 잔차가 부채꼴 모양으로 흩어져 있거나 고르지 않게 퍼져 있음 일정하지 않은 분산
곡선 고차 항 누락
한 점이 0에서 멀리 떨어져 있음 특이치

잔차에 일정하지 않은 분산이나 패턴이 있으면 예측값이 정확하지 않을 수도 있습니다.

잔차 대 순서

잔차 대 순서 그림은 잔차를 데이터가 수집된 순서대로 표시합니다.

해석

잔차 대 순서 그림을 사용하면 적합치가 관측 기간 동안의 관측치와 비교하여 얼마나 정확한지 확인할 수 있습니다. 점들의 패턴은 모형이 데이터에 적합하지 않다는 것을 나타낼 수도 있습니다. 이상적으로는 그림의 잔차들이 중심선 주위에 랜덤하게 분포해야 합니다.

다음 패턴은 모형이 데이터에 적합하지 않다는 것을 나타낼 수도 있습니다.
패턴 패턴이 나타내는 내용
일관된 장기 추세 모형이 데이터에 적합함
단기 추세 이동 또는 패턴의 변화
한 점이 다른 점들로부터 멀리 떨어져 있음 특이치
점들의 급격한 이동 데이터의 기본 패턴이 변경됨
다음 예의 패턴은 모형이 데이터에 적합하지 않다는 것을 나타낼 수도 있습니다.

관측치의 순서가 왼쪽에서 오른쪽으로 증가함에 따라 잔차가 규칙적으로 줄어듭니다.

잔차 값이 작은 값(왼쪽 부분)에서 큰 값(오른쪽 부분)으로 갑자기 변경됩니다.

잔차 대 변수

잔차 대 변수 그림은 잔차 대 다른 변수를 표시합니다.

해석

그림을 사용하면 변수가 체계적인 방식으로 반응에 영향을 미치는지 여부를 확인할 수 있습니다. 잔차에 패턴이 존재하면 다른 변수가 반응에 연관됩니다. 이 정보를 다른 연구의 기초로 사용할 수 있습니다.

이 사이트를 사용하면 분석 및 사용자 개인 컨텐츠에 대한 쿠키 사용에 동의하는 것입니다.  당사의 개인정보 보호정책을 확인하십시오