최량 부분 집합 회귀 분석에 대한 데이터 고려사항

유효한 결과를 얻으려면 데이터를 수집하고 분석을 수행하거나 결과를 해석할 때 다음 지침을 따르십시오.

데이터에 두 개 이상의 계량형 예측 변수가 포함되어야 합니다.

계량형 변수는 측정 및 정렬이 가능하며 임의의 두 변수 사이에 무한한 수의 값을 가질 수 있습니다. 예를 들어, 타이어 표본의 지름은 계량형 변수입니다.

범주형 변수에는 유한하고 셀 수 있는 수의 범주 또는 고유 그룹이 포함됩니다. 범주형 데이터에는 논리적 순서가 없을 수도 있습니다. 예를 들어, 범주형 예측 변수에는 성별, 재료 유형, 결제 방법이 포함됩니다.

이산형 변수가 있는 경우 이 변수를 계량형 예측 변수로 간주할 것인지, 범주형 예측 변수로 간주할 것인지 결정할 수 있습니다. 이산형 변수는 측정 및 정렬이 가능하지만 셀 수 있는 수의 값을 가질 수 있습니다. 예를 들어, 한 가구에 거주하는 사람의 수는 이산형 변수입니다. 이산형 변수를 계량형으로 간주할 것인지, 범주형으로 간주할 것인 지는 수준 개수 및 분석 목적에 따라 결정됩니다. 자세한 내용은 범주형, 이산형 및 계량형 변수의 정의에서 확인하십시오.

  • 범주형 예측 변수가 있는 경우 회귀 모형 적합을 단계적 절차와 함께 사용하여 예측 변수의 통계적 유의성을 기반으로 예측 변수를 자동으로 추가하거나 제거하여 회귀 모형을 선택합니다.
  • 내포되거나 변량인 범주형 예측 변수가 있으면 모두 고정 요인인 경우 일반 선형 모형 적합, 변량 요인이 있는 경우 혼합 효과 모형 적합을 사용하십시오.
반응 변수가 계량형이어야 함
반응 변수가 범주형이면 모형이 분석의 가정을 충족하거나 데이터를 정확히 설명하거나 유용한 예측을 할 가능성이 적습니다.
최적의 경험을 사용한 데이터 수집
유효한 결과를 얻으려면 다음 지침을 따르십시오.
  • 데이터가 관심 있는 모집단을 나타내는지 확인합니다.
  • 필요한 정밀도를 제공하기에 충분한 데이터를 수집합니다.
  • 최대한 정확하게 변수를 측정합니다.
  • 데이터를 수집된 순서대로 기록합니다.
모형이 데이터를 잘 적합해야 함
모형이 데이터를 적합시키지 않으면 잘못된 결과를 얻을 수 있습니다. 최량 부분 집합은 후보 모형을 식별하고 모형의 적합도를 확인하기 위한 결과를 제공합니다. 최량 부분 집합은 개별 모형 항을 평가하기 위한 잔차 그림이나 결과를 제공하지 않습니다. 이 결과를 평가하려면 회귀 모형 적합을 사용하여 후보 모형을 추가로 조사하십시오.
이 사이트를 사용하면 분석 및 사용자 개인 컨텐츠에 대한 쿠키 사용에 동의하는 것입니다.  당사의 개인정보 보호정책을 확인하십시오