혼합물 설계 분석에 대한 적합치 및 진단 표

적합치 및 진단 표의 모든 통계량에 대한 정의 및 해석 방법을 확인해 보십시오.

적합치

적합치는 라고도 합니다. 적합치는 지정된 예측 변수 값에 대한 평균 반응의 점 추정치입니다. 예측 변수의 값은 x-값이라고도 합니다.

해석

적합치는 데이터 집합의 각 관측치에 대한 특정 x-값을 모형 방정식에 입력하여 계산됩니다.

예를 들어, 방정식이 y = 5 + 10x이면 x-값 2에 대한 적합치는 25(25 = 5 + 10(2))입니다.

적합치가 관측치와 매우 다른 관측치는 비정상적일 수도 있습니다. 예측 변수 값이 비정상적인 관측치는 영향 관측치일 가능성이 있습니다. 데이터에 비정상적이거나 영향력 있는 값이 포함된 것으로 확인되는 경우 이러한 관측치를 식별하는 비정상적 관측치에 대한 적합치 및 진단 표가 결과에 포함됩니다. Minitab에서 표시된 비정상적인 관측치는 제시된 회귀 방정식을 잘 따르지 않습니다. 그러나 몇 개의 관측치는 비정상적일 것이라고 예상됩니다. 예를 들어, 큰 표준화 잔차 기준을 토대로 관측치의 약 5%는 큰 표준화 잔차를 가지는 것으로 표시됩니다. 비정상적인 값에 대한 자세한 내용은 비정상적 관측치에서 확인하십시오.

SE 적합치

적합치의 표준 오차(SE 적합치)는 지정된 변수 설정에 대해 추정된 평균 반응의 변동량을 추정합니다. 평균 반응의 신뢰 구간 계산에는 적합치의 표준 오차가 사용됩니다. 표준 오차는 항상 음수가 아닙니다.

해석

평균 반응의 추정치 정확도를 측정하려면 적합치의 표준 오차를 사용하십시오. 표준 오차가 작을수록 예측된 평균 반응이 더 정확합니다. 예를 들어 한 분석가가 배송 시간을 예측하는 모형을 개발합니다. 변수 설정 집합 하나에 대해 모형은 평균 배송 시간을 3.80일로 예측합니다. 해당 설정에 대한 적합치의 표준 오차는 0.08일입니다. 두 번째 변수 설정 집합에 대해 모형은 적합치의 표준 오차가 0.02일인 동일한 평균 배송 시간을 산출합니다. 분석가는 두 번째 변수 설정 집합의 평균 배송 시간이 3.80일에 가깝다는 것을 더 신뢰할 수 있습니다.

적합치의 표준 오차를 적합치와 함께 사용하여 평균 반응의 신뢰 구간을 생성할 수 있습니다. 예를 들어 95% 신뢰 구간은 자유도에 따라 예측 평균의 위아래로 표준 오차의 약 2배만큼 확장됩니다. 배송 시간의 경우 표준 오차가 0.08일 때 예측된 평균인 3.80일에 대한 95% 신뢰 구간은 (3.64, 3.96)일입니다. 모집단 평균이 이 범위 안에 있다고 95% 신뢰할 수 있습니다. 표준 오차가 0.02일 때 95% 신뢰 구간은 (3.76, 3.84)일입니다. 두 번째 변수 설정 집합의 신뢰 구간은 표준 오차가 더 작기 때문에 더 좁습니다.

잔차

잔차(ei)는 관측치(y)와 해당하는 적합치, () 간의 차이로 모형에 의해 예측되는 값입니다.

이 산점도에는 성인 남성의 표본에 대한 몸무게 대 키가 표시됩니다. 적합 회귀선은 키와 몸무게 사이의 관계를 나타냅니다. 키가 6피트인 경우 몸무게에 대한 적합치는 190파운드입니다. 실제 몸무게가 200인 경우 잔차는 10입니다.

해석

모형이 적절하고 회귀 분석의 가정을 충족하는지 여부를 확인하려면 잔차를 그림으로 표시하십시오. 잔차를 조사하면 모형이 데이터에 얼마나 잘 적합되는 지에 대한 유용한 정보를 얻을 수 있습니다. 일반적으로 잔차는 분명한 패턴이나 비정상적인 값 없이 랜덤하게 분포해야 합니다. 데이터에 비정상적인 값이 포함된 것으로 확인되는 경우 Minitab에서는 결과의 비정상적 관측치에 대한 적합치 및 진단 표에 이러한 관측치를 표시합니다. Minitab에서 비정상적으로 표시하는 관측치는 제시된 회귀 방정식을 잘 따르지 않습니다. 그러나 몇 개의 관측치는 비정상적일 것이라고 예상됩니다. 예를 들어, 큰 잔차에 대한 기준을 바탕으로, 관측치의 약 5%는 큰 잔차를 가지는 것으로 표시될 것입니다. 비정상적인 값에 대한 자세한 내용은 비정상적 관측치에서 확인하십시오.

표준화 잔차

표준화 잔차는 잔차(ei)를 해당 표준 편차의 추정치로 나눈 값과 같습니다.

해석

표준화 잔차를 사용하면 특이치를 탐지하는 데 도움이 됩니다. 일반적으로 2보다 크거나 -2보다 작은 표준화 잔차는 큰 것으로 간주됩니다. 비정상적 관측치에 대한 적합치 및 진단 표에는 이러한 관측치가 'R'로 표시됩니다. Minitab에서 표시된 관측치는 제시된 회귀 방정식을 잘 따르지 않습니다. 그러나 몇 개의 관측치는 비정상적일 것이라고 예상됩니다. 예를 들어, 큰 표준화 잔차 기준을 토대로 관측치의 약 5%는 큰 표준화 잔차를 가지는 것으로 표시될 것입니다. 자세한 내용은 비정상적 관측치에서 확인하십시오.

원시 잔차는 특이치를 잘 나타내지 못하므로 표준화 잔차가 유용합니다. 각 잔차의 분산은 잔차와 연관된 x-값만큼 다를 수 있습니다. 이 분산이 동일하지 않아 원시 잔차의 크기를 평가하기 어렵습니다. 잔차를 표준화하면 서로 다른 분산이 공통 척도로 변환되어 이 문제가 해결됩니다.

이 사이트를 사용하면 분석 및 사용자 개인 컨텐츠에 대한 쿠키 사용에 동의하는 것입니다.  당사의 개인정보 보호정책을 확인하십시오