Minitab에서 일반 선형 모형(GLM)의 설계 행렬

일반 선형 모형에서는 회귀 분석 방법을 사용하여 사용자가 지정한 모형을 적합시킵니다. Minitab에서는 먼저 요인과 공변량으로 설계 행렬을 만들고 사용자가 지정한 모형을 만듭니다. 이 행렬의 열은 회귀 분석을 위한 예측 변수가 됩니다.

설계 행렬에는 n(관측치 수)개의 행과 모형의 각 항에 대한 하나의 열 블럭(종종 지시 변수라고 함)이 있습니다. 블럭에는 해당 항에 대한 자유도 개수만큼의 열이 있습니다. 첫 번째 블럭은 상수 블럭이며 모두 1로 구성된 열 하나를 포함하고 있습니다. 공변량 블럭에도 공변량 열 자체를 나타내는 하나의 열이 있습니다.

A는 수준이 4개인 요인이고 모형이 -1, 0, +1 코드화를 사용한다고 가정합니다. 이 경우 자유도는 3이 되고 이 블럭에는 A1, A2, A3이라는 3개의 열이 포함됩니다. 각 행은 다음 중 하나로 코드화됩니다.
A 수준 A1 A2 A3
1 1 0 0
2 0 1 0
3 0 0 1
4 -1 -1 -1
요인 B는 수준이 3개이며 요인 A의 각 수준 내에 내포된다고 가정합니다. 그러면 이 블럭에는 (3 - 1) x 4 = 8개의 열(B11, B12, B21, B22, B31, B32, B41, B42)이 포함되며 이 블럭은 다음과 같이 코드화됩니다.
A 수준 B 수준 B11 B12 B21 B22 B31 B32 B41 B42
1 1 1 0 0 0 0 0 0 0
1 2 0 1 0 0 0 0 0 0
1 3 -1 -1 0 0 0 0 0 0
2 1 0 0 1 0 0 0 0 0
2 2 0 0 0 1 0 0 0 0
2 3 0 0 -1 -1 0 0 0 0
3 1 0 0 0 0 1 0 0 0
3 2 0 0 0 0 0 1 0 0
3 3 0 0 0 0 -1 -1 0 0
4 1 0 0 0 0 0 0 1 0
4 2 0 0 0 0 0 0 0 1
4 3 0 0 0 0 0 0 -1 -1

교호작용 항에 대한 지시 변수를 계산하려면 교호작용의 요인 및/또는 공변량에 대한 모든 해당 더미 변수를 곱하면 됩니다. 예를 들어, 요인 A의 수준이 6개이고, C의 수준이 3개이고, D의 수준이 4개이며, Z와 W가 공변량이라고 가정합니다. 이 경우 A * C * D * Z * W * W 항에는 5 x 2 x 3 x 1 x 1 x 1 = 30개의 지시 변수가 있습니다. 이러한 지시 변수를 구하려면 A의 각 지시 변수와 C의 각 지시 변수, D의 각 지시 변수를 곱하고, 공변량 Z를 한 번, 공변량 W를 두 번 곱하면 됩니다.

이 사이트를 사용하면 분석 및 사용자 개인 컨텐츠에 대한 쿠키 사용에 동의하는 것입니다.  당사의 개인정보 보호정책을 확인하십시오