観測値数は、カテゴリに属するサンプル内の観測実数です。
観測度数は変数が独立している場合に、平均的に、セルで期待される頻度です。Minitabでは、行と列の合計の製品を観測値の総数で割って、期待度数を計算します。
出力表の各セルで観測値と期待値を比較することができます。これらの結果では、観測セル度数が各セルの最初の数、期待度数が各セルの2番目の数です。
2つの変数が関連している場合、第1の変数に対する観測値の分布は、第2の変数のカテゴリに応じて異なります。2つの変数が互いに独立である場合、第1の変数に対する観測値の分布は、第2の変数の全カテゴリについて類似します。この例では、表の列1、行2より、観測度数は76、期待度数は60.78です。観測度数は、変数が独立である場合に期待される度数よりも、はるかに大きいように見えます。
第1シフト | 第2シフト | 第3シフト | すべて | |
---|---|---|---|---|
1 | 48 | 47 | 48 | 143 |
56.08 | 46.97 | 39.96 | ||
-1.0788 | 0.0050 | 1.2726 | ||
2 | 76 | 47 | 32 | 155 |
60.78 | 50.91 | 43.31 | ||
1.9516 | -0.5476 | -1.7184 | ||
3 | 36 | 40 | 34 | 110 |
43.14 | 36.13 | 30.74 | ||
-1.0867 | 0.6443 | 0.5889 | ||
すべて | 160 | 134 | 114 | 408 |
周辺度数を用いて、度数がカテゴリ間でどう分布しているのかを理解します。
これらの結果では、行1の合計は143、行2の合計は155、行3の合計は110です。すべての行の和は408です。列1の合計は160、列2の合計は134、列3の合計は114です。すべての列の和は408です。
第1シフト | 第2シフト | 第3シフト | すべて | |
---|---|---|---|---|
1 | 48 | 47 | 48 | 143 |
56.08 | 46.97 | 39.96 | ||
-1.0788 | 0.0050 | 1.2726 | ||
2 | 76 | 47 | 32 | 155 |
60.78 | 50.91 | 43.31 | ||
1.9516 | -0.5476 | -1.7184 | ||
3 | 36 | 40 | 34 | 110 |
43.14 | 36.13 | 30.74 | ||
-1.0867 | 0.6443 | 0.5889 | ||
すべて | 160 | 134 | 114 | 408 |
Minitabでは、各セルのカイ二乗統計量への寄与度が表示され、各セルの相違に起因している合計カイ二乗統計量の割合が定量化されます。
Minitabでは、各セルのカイ二乗統計量への寄与度が、そのセルの期待値で割った、セルの観測値と期待値の間の差の平方として計算されます。カイ二乗統計量はすべてのセルに対するこれらの値の和です。
第1シフト | 第2シフト | 第3シフト | すべて | |
---|---|---|---|---|
1 | 48 | 47 | 48 | 143 |
56.08 | 46.97 | 39.96 | ||
1.1637 | 0.0000 | 1.6195 | ||
2 | 76 | 47 | 32 | 155 |
60.78 | 50.91 | 43.31 | ||
3.8088 | 0.2998 | 2.9530 | ||
3 | 36 | 40 | 34 | 110 |
43.14 | 36.13 | 30.74 | ||
1.1809 | 0.4151 | 0.3468 | ||
すべて | 160 | 134 | 114 | 408 |
カイ二乗 | 自由度 | p値 | |
---|---|---|---|
Pearson | 11.788 | 4 | 0.019 |
尤度比 | 11.816 | 4 | 0.019 |
ピアソンのカイ二乗統計量(χ2)は、観測度数と期待度数の差の二乗を示します。
尤度比カイ二乗統計量(G2)は、観測度数の期待度数に対する比率に基づいています。
変数に関連性があるかどうかをテストするには、カイ二乗統計量を使用します。
これらの結果では、両方のカイ二乗統計量がとても似ています。p値を用いて、カイ二乗統計量の有意性を評価します。カイ二乗 | 自由度 | p値 | |
---|---|---|---|
Pearson | 11.788 | 4 | 0.019 |
尤度比 | 11.816 | 4 | 0.019 |
期待度数が小さい時、結果は誤解を招く可能性があります。詳細は、関連性のカイ二乗検定のデータに関する考慮事項を参照します。
自由度(DF)は統計内で独立している情報の数です。表の自由度は(列数 – 1)に(行数 – 1)を乗じます。
Minitabでは、自由度を使用して、検定統計量と関連性のあるp値を判定します。
これらの結果では、自由度(DF)は4です。
カイ二乗 | 自由度 | p値 | |
---|---|---|---|
Pearson | 11.788 | 4 | 0.019 |
尤度比 | 11.816 | 4 | 0.019 |
p値は帰無仮説を棄却するための証拠を測定する確率です。確率が低いほど、帰無仮説を棄却する強力な証拠となります。
p値を用いて、帰無仮説を却下するか却下できないかを判断し、2つのカテゴリ変数の間に関連性がないことを示します。
Minitabでは、カイ二乗統計量を使用してp値を決定します。
期待度数が1未満の場合は結果が無効の可能性があるため、Minitabではp値が表示されません。
これらの結果では、p値は0.019です。p値はαより小さいため、帰無仮説を棄却します。変数に関連性があると結論付けることができます
カイ二乗 | 自由度 | p値 | |
---|---|---|---|
Pearson | 11.788 | 4 | 0.019 |
尤度比 | 11.816 | 4 | 0.019 |
観測度数は、変数が互いに独立している場合の、期待されるセル内の度数です。Minitabでは、期待度数を、行の合計と列の合計を掛け合わせて、観測値の合計数で割って計算します。
出力表の観測値と期待値を比べることができます。
第1シフト | 第2シフト | 第3シフト | すべて | |
---|---|---|---|---|
1 | 48 | 47 | 48 | 143 |
56.08 | 46.97 | 39.96 | ||
-8.078 | 0.034 | 8.044 | ||
2 | 76 | 47 | 32 | 155 |
60.78 | 50.91 | 43.31 | ||
15.216 | -3.907 | -11.309 | ||
3 | 36 | 40 | 34 | 110 |
43.14 | 36.13 | 30.74 | ||
-7.137 | 3.873 | 3.265 | ||
すべて | 160 | 134 | 114 | 408 |
標準化残差は、生残差(または観測度数と期待度数の差)を期待度数の平方根で割ったものです。
出力表の標準化残差を比較して、どのカテゴリ変数で期待度数とサンプルサイズに関連する実度数の差が一番大きいか、また依存しているように見えるかを確認します。たとえば、出力表の標準化残差を評価して、不良品を生み出す機械とシフトの間の関連性を見ることができます。
第1シフト | 第2シフト | 第3シフト | すべて | |
---|---|---|---|---|
1 | 48 | 47 | 48 | 143 |
56.08 | 46.97 | 39.96 | ||
-1.0788 | 0.0050 | 1.2726 | ||
2 | 76 | 47 | 32 | 155 |
60.78 | 50.91 | 43.31 | ||
1.9516 | -0.5476 | -1.7184 | ||
3 | 36 | 40 | 34 | 110 |
43.14 | 36.13 | 30.74 | ||
-1.0867 | 0.6443 | 0.5889 | ||
すべて | 160 | 134 | 114 | 408 |
調整済み残差は、生残差(または観測度数と期待度数の差)を標準誤差の推定値で割ったものです。調整済み残差を用いて、サンプルサイズによるばらつきを考慮に入れます。
出力表の調整済み残差を比較して、どのカテゴリで期待度数とサンプルサイズに関連する実度数の差が一番大きいかを確認します。たとえば、どの機械、どのシフトで、不良品の期待数と不良品の実数の差が一番大きいのかを確認できます。
第1シフト | 第2シフト | 第3シフト | すべて | |
---|---|---|---|---|
1 | 48 | 47 | 48 | 143 |
56.08 | 46.97 | 39.96 | ||
-1.7169 | 0.0076 | 1.8602 | ||
2 | 76 | 47 | 32 | 155 |
60.78 | 50.91 | 43.31 | ||
3.1788 | -0.8485 | -2.5707 | ||
3 | 36 | 40 | 34 | 110 |
43.14 | 36.13 | 30.74 | ||
-1.6309 | 0.9199 | 0.8117 | ||
すべて | 160 | 134 | 114 | 408 |