Z値とは、標準偏差の単位で観測統計量とその仮説母集団パラメータの差を測定するZ検定の統計量です。たとえば、工場の選択した鋳型グループの平均深さが10cm、標準偏差が1cmであるとします。深さ12cmの鋳型は、深さが平均より2標準偏差分大きいので、Z値が2になります。次に示す垂直方向のラインはこの観測値を表し、母集団全体に対する相対的な位置を示しています。

観測値をZ値に変換することを標準化と呼びます。母集団の観測値を標準化するには、対象の観測値から母集団平均を引き、その結果を母集団の標準偏差で除算します。この計算結果が、対象の観測値に関連付けられるZ値です。

Z値を使用して、帰無仮説を棄却するかどうかを判断できます。帰無仮説を棄却するかどうかを判断するには、Z値を棄却値と比較します。これは、ほとんどの統計の教科書の標準正規表に示されています。棄却値は、両側検定の場合はZ1-α/2、片側検定の場合はZ1-αです。Z値の絶対値が棄却値より大きい場合、帰無仮説を棄却します。そうでない場合、帰無仮説を棄却できません。

たとえば、2つ目の鋳型グループの平均深さも10cmかどうかを調べるとします。2番目のグループの各鋳型の深さを測定し、グループの平均深さを計算します。1サンプルZ検定で−1.03のZ値を計算します。0.05のαを選択し、棄却値は1.96になります。Z値の絶対値は1.96より小さいため、帰無仮説を棄却することはできず、鋳型の平均深さが10cmではないと結論付けることはできません。