1系列指数平滑化の主要な結果を解釈する

1系列指数平滑化分析を解釈するには、次の手順を実行します。主要な出力には、平滑化プロット、精度の測度、および予測などがあります。

ステップ1: モデルがデータに適合するかどうか判断する

平滑化プロットを調べて、モデルがデータに適合するかどうか判断します。適合が実際のデータに密接に従う場合、モデルはデータに適合します。
  • モデルがデータに適合する場合は、移動平均を実行し、2つのモデルを比較できます。
  • モデルがデータに適合しない場合は、プロットにトレンドまたは季節性があるかどうか調べます。それらが認められる場合は、別の時系列分析を使用します。詳細は、使用する時系列分析を参照してください。

この平滑化プロットでは適合値がデータに密接に従っており、これは、そのモデルがデータに適合することを示しています。

ステップ2: モデルの適合を他のモデルと比較する

精度の測度(MAPE、MAD、およびMSD)を使用して、モデルの適合度を他の時系列モデルと比較します。これらの統計量は、それ自体ではそれほど参考になりませんが、別の方法を使用して得られた適合度を比較する目的で使用できます。それら3つの統計量すべてにおいて、通常は値が小さいほど適合性が高いモデルであることを示します。単一のモデルに3つすべての統計量の最小値が含まれていない場合は、通常、MAPEが優先される測定方法となります。

この精度の測度は、データの終わりからの1期間を予測する場合に期待される精度を示しています。したがって、1期間より先の期間の予測の精度を示すものではありません。予測でモデルを使用する場合は、精度の測度のみに基づいて決定しないでください。モデルの適合度も調べ、特に系列の終わりにその予測とモデルがデータに密接に従うことを確認する必要があります。

モデル1

精度の測度

MAPE7.265
MAD16.621
MSD518.119

モデル2

精度の測度

MAPE2.474
MAD9.462
MSD135.701

主要な結果: MAPE、MAD、MSD

これらの結果において、2番目のモデルのほうが1番目のモデルと比較して3つすべての数値が小さくなっています。したがって、2番目のモデルのほうが適合性が高いと言えます。

ステップ3: 予測値が正確かどうか判断する

このプロットで適合値と予測値を調べて、予測値が正確である可能性が高いかどうかを判断します。予測値は、系列の終わりでデータの通常の流れに従う必要があります。単純指数平滑化の予測値は一定のため、予測の前のデータにトレンドがないことが重要です。予測の前にトレンドがある場合、予測値は正確ではない可能性があります。

1系列指数平滑化から得られる予測は、水準の最近の推定のみに基づいており、トレンドの推定はないため、非常に保守的です。通常は、6期間先までの範囲についてのみ予測してください。

この平滑化プロットでは、特に系列の終わりに、適合値がデータに密接に従っています。今後6か月間の売上は、約52~65の範囲となり、約58であると予想できます。