回帰係数は、予測変数と応答変数の関係の、サイズと方向を表します。係数とは、回帰式において項の値に乗じられる数です。
予測変数の変化により事象が発生する可能性が高くなるか低くなるかを特定するには係数を使います。一般的に係数が正数の場合は事象が発生する可能性が高く、負数の場合は低くなります。0に近い推定係数は、予測子の効果が小さいことを意味します。カテゴリ予測変数の場合、解釈はコーディングによって異なります。
係数の標準誤差により、同じ母集団から繰り返しサンプルを抽出する場合に得られる係数推定値間の変動を推定します。計算では、サンプルを繰り返し抽出する場合はサンプルのサイズと係数の推定値は変わらないと仮定します。
係数の標準誤差を使用して、係数の推定値の精度を測定します。標準誤差が小さいほど、推定値の精度が高くなります。
信頼区間(CI)は、モデル内の各項の係数の真の値が含まれる可能性のある値の範囲です。信頼区間の計算では、正規分布を使用します。散布すのサイズが十分に大きく、サンプルの係数の分布が正規分布に従う場合、信頼区間は正確です。
データのサンプルはランダムであるため、1つの母集団からの2つのサンプルの信頼区間が同一である可能性は低くなります。しかし、ランダムなサンプルを何度も繰り返して測定すると、得られた信頼区間の特定の割合に未知の母集団パラメータが含まれることになります。このようなパラメータを含む信頼区間の割合(%)を区間の信頼水準と言います。
信頼区間を使用して、モデルの各項の母集団係数の推定値を評価します。
たとえば、信頼水準が95%の場合、信頼区間に母集団係数の値が含まれていることが95%信頼できます。信頼区間は、結果の実質的な有意性を評価するのに役立ちます。状況に応じた専門知識を利用して、信頼区間に実質的に有意な値が含まれているかどうかを判断します。信頼区間が広すぎて有用でない場合は、サンプルサイズを増やすことを検討します。
Z値は、係数とその標準誤差の間の比率を測定する検定統計量です。
Z値を使用してMinitabで計算されるp値に基づいて、項およびモデルの統計的有意性に関する決定を下すことができます。サンプルの係数の分布が正規分布に基づくようになるほどサンプルのサイズが大きい場合、この検定は正確です。
Z値が0から十分に離れている場合は、係数の推定値が、0から統計的に異なるほど十分に大きくかつ正確であることを示しています。逆に、Z値が0に近い場合は、項に効果に対する影響力があると確信するには、係数の推定値が小さすぎるか、または精度が低すぎることを示しています。
p値は帰無仮説を棄却するための証拠を測定する確率です。確率が低いほど、帰無仮説を棄却する強力な証拠となります。