有効な結果が確実に得られるようにするため、データの収集、分析の実行、結果の解釈時には、次のガイドラインを考慮してください。
連続変数は測定および順序付けが可能で、2値間の間の数は無限です。たとえば、タイヤのサンプルの直径は連続変数です。
カテゴリ変数には、有限可算数のカテゴリまたは知覚グループが含まれます。カテゴリデータには、論理的順序がない場合があります。たとえば、カテゴリ予測変数には、性別、材料種、支払い方法が含まれます。
離散変数の場合、それを連続予測変数として扱うかカテゴリ予測変数として扱うかを決めることができます。離散変数は測定と順序付けが可能ですが、計数値をとります。たとえば、一世帯の人数は離散変数です。離散変数を連続として扱うかカテゴリとして扱うかは、水準数および分析の目的によって異なります。詳細はカテゴリ変数、離散変数、連続変数とはを参照してください。
多重共線性が極端である場合、どの予測変数をモデルに含むべきか判断できないことがあります。多重共線性の大きさを判断するには、予測変数間の相関関係を調べます。予測変数に高度な相関があるかどうかを判断するには、を選択します。
モデルがデータに適合しない場合、結果は、誤った認識を与える可能性があります。適切なモデルの適合度検定のp値はα値よりも大きくなります。この状態は、モデルがデータに十分に適合しないことを示す証拠が不十分であることを示します。出力において、適合度検定を確認します。