合計自由度(DF)は、データに含まれる情報量のことです。分析では、その情報を使用して、係数の値を推定します。合計自由度DFはデータの行数から1を引いた数です。項の自由度は、その項が使う係数の数を示します。モデルの項の数を増やすと、モデルに係数が追加され、残差誤差の自由度が減少します。誤差の自由度は、モデルでは使用されていない残りの自由度です。
2水準要因計画またはプラケット-バーマン計画では、計画に中心点がある場合、1つの自由度は曲面性の検定に使用されます。中心点に対する項がモデルに含まれている場合、曲面性の行はモデルの一部です。中心点に対する項がモデルに含まれていない場合、曲面性の行はモデルに含まれる項を検定するのに使用される誤差の一部です。応答曲面計画および決定的スクリーニング計画では、曲面性の検定が不要になるように、二乗項を推定することができます。
分散分析表の各項にはカイ二乗値があります。カイ二乗値は、項またはモデルに応答との関連があるかどうかを判断する検定統計量です。
Minitabではカイ二乗統計量を使用してp値を計算し、この値に基づいて、項およびモデルの統計的有意性を判断します。p値は帰無仮説を棄却するための証拠を測定する確率です。確率が低いほど、帰無仮説を棄却する強力な証拠となります。カイ二乗統計量が十分に大きいとp値は小さくなり、項またはモデルが統計的に有意であることを示します。
p値は帰無仮説を棄却するための証拠を測定する確率です。確率が低いほど、帰無仮説を棄却する強力な証拠となります。
p値は帰無仮説を棄却するための証拠を測定する確率です。確率が低いほど、帰無仮説を棄却する強力な証拠となります。
調整済みの逸脱度は、モデル内の異なる構成要素の変動の測度です。モデルの予測変数の順序は調整済みの逸脱度の計算に影響を与えません。逸脱度は、異なる要因による逸脱度を説明する構成要素に分けられます。
Minitabでは、調整済み逸脱度を使用して項のp値を計算します。調整済み逸脱度を使用して、R2統計量を計算することもできます。通常、調整済み逸脱度ではなくp値とR2統計量を解釈します。
調整済み平均逸脱度は、項またはモデルが各自由度の逸脱度をどれだけ説明づけるかを測定します。各項の調整済み平均逸脱度の計算では、モデル内にすべての他の項があると仮定します。
Minitabでは、カイ二乗値を使用して項のp値を計算します。通常は、調整平均平方の代わりにp値を解釈します。
検定のために逐次逸脱度を「使用する」に指定すると、逐次逸脱度を使用して回帰モデルのp値と各項を計算します。通常、逐次逸脱度ではなくp値を解釈します。
逐次平均逸脱度は、項またはモデルが各自由度の逸脱度をどれだけ説明づけるかを測定します。逐次平均逸脱度の計算は、項がモデルに入力される順序によって決まります。
Minitabでは、逐次平均逸脱度を使用して項のp値を計算します。通常は、逐次平均平方の代わりにp値を解釈します。
寄与度には、分散分析表の各要因が合計逐次逸脱度に寄与するパーセンテージを表示します。
パーセンテージが高い場合、応答変数の中で要因が逸脱度よりも大きな割合を占めていることを示します。回帰モデルの寄与率は逸脱度R2と同じです。