ステップワイズでは、有効な項のサブセットを特定する目的でモデルに項が追加、削除されます。ステップワイズ手順を選択した場合、モデルダイアログボックスで指定する項が最終モデルの候補になります。詳細については、ベストサブセット回帰とステップワイズ回帰の使用を参照してください。
この手順は、前方情報基準法と同じ条件で停止します。
最終のモデルに含まれる項は、モデル階層の制限に依存する場合があります。詳細は、下の階層に関するトピックを参照してください。
前方選択で使用する情報基準を指定します。
AICcとBICは両方とも、モデルの尤度を評価し、モデルに項を追加したときにペナルティを適用します。このペナルティにより、モデルがサンプルデータに過剰適合する傾向を減少させます。こうした減少により、通常のモデルのパフォーマンスを改善できます。
一般的なガイドラインとして、パラメーター数がサンプルサイズよりも少ない場合、BICにおける各パラメーターの追加に対するペナルティはAICcよりも大きくなります。これらのケースでは、BICを最小化するモデルは、AICcを最小化するモデルよりも小さくなる傾向があります。
スクリーニング計画などのよくある一部のケースでは、一般的に、パラメーター数はサンプルサイズよりも多くなります。これらのケースでは、AICcを最小化するモデルは、BICを最小化するモデルよりも小さくなる傾向があります。たとえば、実行数が13の決定的スクリーニング計画では、AICcを最小化するモデルは、6個以上のパラメーターを持つ1組のモデル内ではBICを最小化するモデルよりも小さくなる傾向があります。
AICcとBICに関する詳細は、Burnham and Anderson(1を参照してください。
検証の設定は、 検証サブダイアログボックスにも表示されます。設定を変更すると、両方の場所の設定が自動的に更新されます。
ステップワイズの手順中に、どのようにモデルの階層を組み込むかを決めることができます。モデルダイアログボックスに非階層モデルを指定した場合、階層ボタンは無効になります。
階層モデルでは、高次の項を構成するすべての低次の項もモデルに組み込まれています。たとえば、交互作用項A*B*Cを含むモデルがA、B、C、A*B、A*C、B*Cを含む場合、このモデルは階層的です。
モデルは非階層になることもあります。一般的に、低次項が有意でなければ、対象分野の知識から含める方が良いと考えられる場合を除き、その低次項を削除できます。項が多すぎるモデルは、相対的に精度が下がる可能性があり、新しい観測値の予測能力を低下させることがあります。
テストセットを使用した前方選択を選択すると、トレーニングのプロットと、前方選択の各ステップのテストの逸脱R2値を表示します。通常、このプロットを使用して、より単純なモデルに類似した検定値があるかどうかを判断します。