合計予測変数 | 77 |
---|---|
重要な予測変数 | 10 |
基底関数の最大数 | 30 |
基底関数の最適な数 | 13 |
統計量 | トレーニング | テスト |
---|---|---|
R二乗 | 89.61% | 87.61% |
二乗平均平方根誤差(RMSE) | 25836.5197 | 27855.6550 |
平均平方誤差 (MSE) | 667525749.7185 | 775937512.8264 |
平均絶対偏差 (MAD) | 17506.0038 | 17783.5549 |
これらの結果では、検定のR二乗は約88%です。検定二乗平均平方根誤差は約27,856です。検定平均の二乗誤差は約775,937,513です。検定平均絶対偏差は約17,784です。
相対変数重要度チャートを使用して、どの予測変数がモデルにとって最も重要な変数であるかを確認します。
重要な変数は、モデル内の少なくとも1つの基底関数にあります。改善度のスコアが最も高い変数が最も重要な変数とされ、他の変数もそれに応じてランク付けされます。相対変数重要度は解釈を容易にするために重要度値が標準化されたものです。相対重要度は、最も重要な予測変数に対するパーセント改善度として定義されます。
相対変数の重要度の値の範囲は 0% から 100% です。最も重要な変数の相対重要度は常に 100% です。変数が基底関数にない場合、その変数は重要ではありません。
回帰式の偏依存プロット、基底関数、および係数を使用して、予測変数の効果を判断します。予測変数の効果は、予測変数と応答の関係を説明します。応答変数に対する予測変数の効果を理解するために、予測変数のすべての基底関数を検討します。
さらに、他のモデルを構築する際には、重要な予測変数の使用とその関係の形式を考慮してください。たとえば、MARS® 回帰モデルに交互作用が含まれている場合は、それらの交互作用を最小二乗回帰モデルに含めるかどうかを検討して、2 種類のモデルのパフォーマンスを比較します。予測変数を制御するアプリケーションでは、効果によって設定を最適化して応答変数の目標を達成する自然な方法が提供されます。
加法モデルでは、1つの予測変数の偏依存プロットは、重要な連続予測変数が予測応答にどのように影響するかを示します。1つの予測変数の部分依存性プロットは、予測変数レベルの変更に伴って応答がどのように変化すると予想されるか示しています。の場合 MARS® 回帰、プロットの値は、x軸の予測変数の基底関数から取得されます。Y軸の寄与度は、プロット上の最小値が0になるように標準化されています。
一般的な基底関数のその他の例については、「」を参照してください の回帰式 MARS® 回帰。