Sはデータ値と適合値間の距離の標準偏差を表します。Sは応答変数の単位で測定されます。
Sを使い、モデルがどの程度良好に応答を表示するか判断します。Sは応答変数の単位で測定され、データ値と適合値の間の距離を表します。Sの値が小さければ小さいほど、モデルによる応答の記述が良好になります。ただし、Sの値が小さいだけでは、そのモデルが仮定を満たしているとは言い切れません。残差プロットを確認して仮定を検証する必要があります。
たとえば、ポテトチップ製造会社が、パッケージあたりに含まれる砕けたポテトチップの割合に影響する因子を調べるとします。モデルを有意な予測変数まで下げ、Sの計算値が1.79になったとします。この結果は、適合値を中心としたデータ点の標準偏差が1.79であることを示しています。モデルを比較している場合、1.79よりも低い値は良好な適合を示し、高い値は適合度が低いことが分かります。
R2は、モデルで説明される応答の変動のパーセントです。値は1から残差平方和(モデルによって説明されない変動)の比を引いて全体平方和(データの変動の合計)まで計算されます。


調整済みR2はモデルで説明される応答の変動のパーセントで、観測値数と比較してモデル内の予測変数の数に応じて調整されます。調整されたR2は1から平均平方誤差(MSE)の比を引いて全体平均平方(MS Total)まで計算されます。
異なる数の予測変数を持つモデルを比較する場合は、調整済みR2を使用します。R2はモデルに予測変数を追加すると、それがモデルを改善しないとしても必ず大きくなります。調整済みR2値にはモデルに含まれる予測変数の数が組み入れられるため、正しいモデルの選択に役立ちます。
| モデル | ポテトの割合 | 冷却率 | 調理温度 | R2 | 調整済みR2 |
|---|---|---|---|---|---|
| 1 | X | 52% | 51% | ||
| 2 | X | X | 63% | 62% | |
| 3 | X | X | X | 65% | 62% |
1つ目のモデルのR2は50%以上になります。2つ目のモデルでは冷却率がモデルに追加されました。調整済みR2は大きくなり、冷却率によりモデルが改善されることを示しています。調理温度が追加された3つ目のモデルでもR2は大きくなりますが、調整済みR2は大きくなりません。3番目のステップでは、調理温度がモデルに追加され、逸脱度R2は上昇しますが、調整済みR2は上昇しません。これらの結果から、調理温度はモデルを改善しないことがわかります。