合計自由度(DF)は、データに含まれる情報量のことです。分析では、その情報を使用して、未知の母集団のパラメータ値を推定します。合計自由度は、サンプルに含まれる観測値の数によって決定されます。項の自由度は、その項が使う情報量を示します。サンプルサイズを大きくすると、母集団に関して提供される情報が増え、合計自由度が高くなります。モデルに含める項の数を増やすと情報量が増え、パラメータ推定値の変動性を推定するのに使える自由度が低くなります。
合計自由度は観測値の数によって異なります。混合計画では合計自由度は観測値数から1を引いた値です。項の自由度は、その項に対して推定された係数の数です。残差誤差の自由度は、すべてのモデル項説明後に残されたものです。
逐次平方和は、モデルに一覧された異なる要因の変動の測度です。調整平方和と異なり、逐次平方和は項がモデルに追加された順序に依存します。分散分析表では、逐次平方和は下記に示すように、異なる要因に分けられます。
計画分析時にp値を計算するためには逐次平方和は使用しませんが、回帰モデルの適合または一般線形モデルの適合を使用するときに逐次平方和を使用できます。通常、調整平方和を基に、p値とR2統計量を解釈します。
調整平方和は、モデルに一覧された異なる要因の変動の測度です。モデル内の予測変数の次数は、調整平方和の計算に影響を及ぼしません。分散分析表では、調整平方和は下記に示すように、異なる要因に分けられます。
Minitabは調整平方和を使用して分散分析表のp値を計算します。また、平方和を使用してR2の統計量も計算します。通常は、平方和ではなく、p値とR2統計量を解釈します。
調整平均平方は、項やモデルによってどれだけの変動を説明できるかを測定するものです。このとき、その他のすべての項は、入力された順序にかかわらずモデル内に含まれると仮定します。調整平方和と異なり、調整平均平方では、自由度が考慮されます。
調整平均平方誤差(MSEまたはs2)は適合値からの分散です。
Minitabは調整平均平方を使用して分散分析表のp値を計算します。また、調整平均平方を使用して調整済みR2の統計量も計算します。通常は、調整平均平方ではなく、p値と調整済みR2の統計量を解釈します。
F値は分散分析表の各検定に表示されます。
F値を使用してMinitabで計算されるp値に基づいて、検定の統計的有意性に関する決定を下すことができます。p値は帰無仮説を棄却するための証拠を測定する確率です。確率が低いほど、帰無仮説を棄却する強力な証拠となります。F値が十分に大きい場合、統計的有意性を示します。
F値から帰無仮説を棄却するかどうかを判断するには、F値を棄却限界値と比較します。Minitabで棄却限界値を計算することも、ほとんどの統計に関する書籍に掲載されているF分布表で棄却値を見つけることもできます。Minitabを使用した棄却値の計算に関する詳細は、逆累積分布関数(ICDF)の使用に進み、「ICDFを使用して棄却値を計算」をクリックします。
p値は帰無仮説を棄却するための証拠を測定する確率です。確率が低いほど、帰無仮説を棄却する強力な証拠となります。
p値が有意水準より大きい場合、そのモデルにより応答での変動が説明されると結論することはできません。新しいモデルを適合することができます。
p値は帰無仮説を棄却するための証拠を測定する確率です。確率が低いほど、帰無仮説を棄却する強力な証拠となります。
成分間の依存により、混合実験におけるモデルの主効果に対するp値は表示されません。特に、成分の比率の合計は固定量や比率になる必要があるため、1つの成分を変更すると他の成分も変えざるをえなくなります。さらに、個別の成分項が切片項のような働きをするので、混合実験のモデルは切片項を持ちません。
p値は帰無仮説を棄却するための証拠を測定する確率です。確率が低いほど、帰無仮説を棄却する強力な証拠となります。Minitabでは、同じx値を持つ複数の観測値である反復がデータに含まれている場合に純粋誤差不適合検定が自動的に実行されます。反復は、「純粋誤差」を表します。これは、ランダム変動だけが複数の応答観測値の差を引き起こすためです。
p値が有意水準より大きい場合は、検定で不適合が何も検出されません。