残差のヒストグラムは、すべての観測値について残差の分布を示します。
パターン | パターンが示す意味 |
---|---|
1つの方向に伸びている | 歪度 |
1本のバーが他のバーから離れている | 外れ値 |
ヒストグラムの外観は、データをグループ化するために使用されている区間の数に依存するので、残差の正規性を評価するときにヒストグラムは使用しません。
ヒストグラムは、データ点が約20個以上ある場合に最も効果的です。サンプルが小さすぎる場合、ヒストグラム上の各バーには歪度や外れ値を確実に表示するだけの十分なデータ点がありません。
残差対適合値グラフでは、y軸に残差が、x軸に適合値がプロットされます。
残差対適合値プロットを使用して、残差はランダムに分布し、均一な分散が存在するという仮定を検証します。点が特徴的なパターンがなく0の両側にランダムに来るのが理想的です。
パターン | パターンが示す意味 |
---|---|
残差が適合値周辺に扇状または不均等に分散している | 不均一分散 |
曲線 | 高次の項の欠損 |
ゼロから遠い点 | 外れ値 |
ある点が他の点からX軸方向に遠く離れている | 影響力のある点 |
残差対データ順序プロットには、データの収集順に残差が表示されます。
残差対変数プロットには、別の変数に対する残差の値が表示されます。その変数は既にモデルに含まれているかもしれません。あるいは含まれていなくても応答変数に影響を与える可能性がある値です。
変数がすでにモデルに含まれている場合、変数のより高次の項を追加する必要があるかどうかを決定します。変数がモデルに含まれていない場合、プロットを使用して、変数が応答に体系的な影響を及ぼしているかどうかを判定します。
パターン | パターンが示す意味 |
---|---|
残差に特定のパターンがある | 変数が応答に体系的に影響を及ぼしています。変数がモデル内にない場合、その変数の項をモデルに含めて、モデルを再適合します。 |
点の分布に曲面性 | 変数の高次の項をモデルに取り込む必要があります。たとえば、曲線的なパターンは、2次項を追加する必要があることを示しています。 |