回帰係数は、予測変数と応答変数の関係の、サイズと方向を表します。係数とは、回帰式において項の値に乗じられる数です。
一般多変量分散分析では、定数の係数と各単変量分析の共変量が表示されます。カテゴリ因子を評価するためには、分散分析表および平均表を参照してください。
項の係数は、その項の変化に関連付けられた平均応答の変化を表し、モデル内の他の全ての項は固定されます。相関係数の符号は項と応答変数の関係の方向を示します。係数の大きさは、応答変数に対して項が持つ影響力の実質的な優位性を評価するのに役立ちます。ただし、係数の大きさは項の統計的な有意性は示しません。これは有意性の計算には応答データの変動も考慮されるためです。統計的な有意性を判断するには、項のp値を調べます。
例えば、あるマネージャーは従業員のスキルテストのスコアが回帰モデル y = 130 + 4.3x によって予測できると判断しました。この式でxは社内トレーニングの時間(0から20)、yはテストスコアです。係数、または傾きは4.3で、これはトレーニング1時間ごとにテストの平均スコアが4.3ポイントずつ上がることを示しています。
係数の標準誤差により、同じ母集団から繰り返しサンプルを抽出する場合に得られる係数推定値間の変動を推定します。計算では、サンプルを繰り返し抽出する場合はサンプルのサイズと係数の推定値は変わらないと仮定します。
係数の標準誤差は、係数の推定値の精度を測定するために使用します。標準誤差が小さいほど、推定値の精度が高くなります。係数を標準誤差で割ったものがt値です。t統計量と関連付けられたp値が有意水準以下の場合、係数は統計的に有意であると結論付けることができます。
たとえば、技術者が太陽熱エネルギーテストの一環として、日射のモデルを推定したとします。
項 | 係数 | 係数の標準誤差 | t値 | p値 | VIF |
---|---|---|---|---|---|
定数 | 809 | 377 | 2.14 | 0.042 | |
南 | 20.81 | 8.65 | 2.41 | 0.024 | 2.24 |
北 | -23.7 | 17.4 | -1.36 | 0.186 | 2.17 |
時刻 | -30.2 | 10.8 | -2.79 | 0.010 | 3.86 |
このモデルでは、北と南は焦点がインチ単位で測られています。北と南の係数は大きさでは似ています。南の係数の標準誤差は北のそれよりも小さくなっています。したがって、このモデルは南の係数をより高い精度で推定することができます。
北の係数の標準誤差は、それ自身の係数とほぼ同程度の大きさです。得られるp値は共通の有意水準よりも大きいため、北の係数が0と異なると結論付けることはできません。
南の係数は北の係数よりも0に近いですが、南の係数の標準誤差は同じように小さくなっています。得られるp値は共通の有意水準よりも小さくなります。南の係数の推定値のほうがより正確なため、南の係数は0とは異なると結論付けることができます。
統計的有意性は、重回帰においてモデルを縮小させる一つの判定基準となります。詳細は、モデルの縮約化を参照してください。
t値は、係数とその標準誤差の間の比率を測定します。
t値を使用してMinitabで計算されるp値に基づいて、係数が0と有意に異なるかどうかを検定することができます。
t値を使用して、帰無仮説を棄却するかどうかを判断できます。ただし、帰無仮説棄却のしきい値は自由度に依存しないため、p値が使用される頻度は高まります。t値に関する詳細については、t値を使用して、帰無仮説を棄却するかどうかを判断するを参照してください。
p値は帰無仮説を棄却するための証拠を測定する確率です。確率が低いほど、帰無仮説を棄却する強力な証拠となります。