総自由度は、データに含まれる情報量のことです。この情報から、未知の母集団のパラメータの値を分析し推定します。総自由度は、サンプルに含まれる観測値の数によって決定されます。項の自由度は、その項が使う情報量を示します。サンプルサイズを大きくすると、母集団に関して提供される情報が増え、総自由度が高くなります。モデルに含める項の数を増やすと情報量が増え、パラメータ推定値の変動性を推定するのに使える自由度が低くなります。
2つの条件が一致すると、Minitabは誤差の自由度を分割します。1つ目の条件は、現在のモデルには含まれていない、データと適合できる項があることです。たとえば、3つ以上の異なる値を持つ連続予測変数がある場合、その予測変数に対して2次項を推定できます。モデルが2次項を含まない場合、データと適合できる項はモデルに含まれていないので、この条件は満たされていることになります。
2つ目の条件は、データに反復が含まれていることです。反復とは、各予測変数の値が同じ観測値のことを言います。たとえば、圧力5、温度25の観測値が3つある場合、それら3つの観測値は反復となります。
2つの条件が一致すると、誤差の自由度の2つの部分は不適合かつ純誤差となります。不適合の自由度は、モデル形式が適切かどうかの検定を可能にします。不適合検定では、不適合に対する自由度が使用されます。純粋誤差の自由度が大きいほど、不適合検定の検定力は高くなります。
逐次平方和は、モデル内の異なる成分の変動の測度です。調整平方和と異なり、逐次平方和は項がモデルに追加された順序に依存します。分散分析表では、逐次平方和は、異なる要因による変動を説明する成分に分けられます。
調整平方和は、モデル内の異なる成分の変動の測度です。モデル内の予測変数の次数は、調整平方和の計算に影響を及ぼしません。分散分析表では、調整平方和は、異なる要因による変動を説明する成分に分けられます。
Minitabでは、調整平方和を使用して項のp値を計算します。また、平方和を使用してR2の統計量も計算します。通常は、平方和ではなく、p値とR2統計量を解釈します。
調整平均平方は、項やモデルによってどれだけの変動を説明できるかを測定するものです。このとき、その他のすべての項は、入力された順序にかかわらずモデル内に含まれると仮定します。調整平方和と異なり、調整平均平方では、自由度が考慮されます。
調整平均平方誤差(平均平方誤差またはs2)は適合値からの分散です。
Minitabでは、調整平均平方を使用して項のp値を計算します。また、調整平均平方を使用して調整済みR2の統計量も計算します。通常は、調整平均平方ではなく、p値と調整済みR2統計量を解釈します。
F値を使用してMinitabで計算されるp値に基づいて、項およびモデルの統計的有意性に関する決定を下すことができます。p値は帰無仮説を棄却するための証拠を測定する確率です。確率が低いほど、帰無仮説を棄却する強力な証拠となります。
F値の大きさが十分であれば、その項またはモデルが有意であることを示します。
F値から帰無仮説を棄却するかどうかを判断するには、F値を棄却限界値と比較します。Minitabで棄却限界値を計算することも、ほとんどの統計に関する書籍に掲載されているF分布表で棄却値を見つけることもできます。Minitabでの棄却限界値の計算方法については、 逆累積分布関数(ICDF)の使用に進み、「逆累積分布関数で棄却限界値を計算する」をクリックします。
p値は帰無仮説を棄却するための証拠を測定する確率です。確率が低いほど、帰無仮説を棄却する強力な証拠となります。
p値は帰無仮説を棄却するための証拠を測定する確率です。確率が低いほど、帰無仮説を棄却する強力な証拠となります。Minitabでは、同じx値を持つ複数の観測値である反復がデータに含まれている場合に純粋誤差不適合検定が自動的に実行されます。反復は、「純粋誤差」を表します。これは、ランダム変動だけが複数の応答観測値の差を引き起こすためです。
p値が有意水準より大きい場合は、検定で不適合が何も検出されません。