総自由度は、データに含まれる情報量のことです。この情報から、未知の母集団を分析し推定します。総自由度は、サンプルに含まれる観測値の数によって決定されます。項の自由度は、その項が使う情報量を示します。サンプルサイズを大きくすると、母集団に関して提供される情報が増え、総自由度が高くなります。モデルに含める項の数を増やすと情報量が増え、パラメータ推定値の変動性を推定するのに使える自由度が低くなります。
調整平方和は、モデル内の異なる成分の変動の測度です。モデル内の予測変数の次数は、調整平方和の計算に影響を及ぼしません。分散分析表では、調整平方和は、異なる要因による変動を説明する成分に分けられます。
Minitabでは、調整平方和を使用して項のp値を計算します。また、平方和を使用してR2の統計量も計算します。通常は、平方和ではなく、p値とR2統計量を解釈します。
調整平均平方(MS)は、項やモデルによってどれだけの変動を説明できるかを測定するものです。このとき、その他のすべての項は、入力された順序にかかわらずモデル内に含まれると仮定します。調整平方和と異なり、調整平均平方では、自由度が考慮されます。
調整平均平方誤差(MSEまたはs2)は適合値からの分散です。
Minitabでは、調整平均平方を使用して項のp値を計算します。また、調整平均平方を使用して調整済みR2の統計量も計算します。通常は、調整平均平方ではなく、p値と調整済みR2統計量を解釈します。
F値は分散分析表の各項に表示されます。F値は項が応答に関連付けられているかを判断する検定統計量です。
F値を使用してMinitabで計算されるp値に基づいて、項およびモデルの統計的有意性に関する決定を下すことができます。p値は帰無仮説を棄却するための証拠を測定する確率です。確率が低いほど、帰無仮説を棄却する強力な証拠となります。
F値の大きさが十分であれば、その項またはモデルが有意であることを示します。
F値から帰無仮説を棄却するかどうかを判断するには、F値を棄却限界値と比較します。Minitabで棄却限界値を計算することも、ほとんどの統計に関する書籍に掲載されているF分布表で棄却値を見つけることもできます。Minitabでの棄却限界値の計算方法については、逆累積分布関数(ICDF)の使用に進み、「逆累積分布関数で棄却限界値を計算する」をクリックします。
p値は帰無仮説を棄却するための証拠を測定する確率です。確率が低いほど、帰無仮説を棄却する強力な証拠となります。
平均表を使い、データ内の因子水準間の統計的に有意な差を把握します。各グループの平均値は、各母平均の推定値です。項のグループ平均値間の統計的に有意な差を探します。