2値適合線プロットの逸脱度表

逸脱度表のすべての統計量の定義と解釈について解説します。

自由度(DF)

合計自由度は(DF)、データに含まれる情報量のことです。分析では、この情報を使用して、未知の母集団パラメータの値を推定します。合計自由度は、データの行数から1を引いた数です。項の自由度は、その項が使用する情報量を示します。モデルの項数が増えるとより多くの情報を使用することになり、誤差の自由度が減少します。誤差の自由度は、パラメータの推定に利用できる情報です。

調整逸脱度

調整済みの逸脱度は、モデル内の異なる構成要素の変動の測度です。モデルの予測変数の順序は調整済みの逸脱度の計算に影響を与えません。逸脱度表では、逸脱度は、異なる要因による逸脱度を説明する構成要素に分けられます。

回帰
回帰モデルの調整済み逸脱度は、現在のモデルと完全モデルの差を定量化します。
項の調整済み逸脱度は、項を持つモデルと完全モデルの差を定量化します。
誤差
誤差の調整済み逸脱度は、モデルでは説明できない逸脱度を定量化します。
合計
合計調整済み逸脱度は、モデルの調整済み逸脱度と誤差の調整済み逸脱度の和です。合計調整済み逸脱度はデータの合計逸脱度を定量化します。

解釈

Minitabでは、調整済み逸脱度を使用して項のp値を計算します。調整済み逸脱度を使用して、R2統計量を計算することもできます。通常、調整済み逸脱度ではなくp値とR2統計量を解釈します。

調整平均

調整済み平均逸脱度は、項またはモデルが各自由度の逸脱度をどれだけ説明づけるかを測定します。各項の調整済み平均逸脱度の計算では、モデル内にすべての他の項があると仮定します。

解釈

Minitabでは、調整済み平均逸脱度を使用して項のp値を計算します。通常は、調整済み平均平方の代わりにp値を解釈します。

カイ二乗

逸脱度表の各項には尤度比検定のカイ二乗値があります。カイ二乗値は、項またはモデルに応答との関連があるかどうかを判断する検定統計量です。

解釈

Minitabではカイ二乗統計量を使用してp値を計算し、この値に基づいて、項およびモデルの統計的有意性を判断します。p値は帰無仮説を棄却するための証拠を測定する確率です。確率が低いほど、帰無仮説を棄却する強力な証拠となります。カイ二乗統計量が十分に大きいとp値は小さくなり、項またはモデルが統計的に有意であることを示します。

p値…回帰

p値は帰無仮説を棄却するための証拠を測定する確率です。確率が低いほど、帰無仮説を棄却する強力な証拠となります。

解釈

回帰モデルに含まれる係数のうち、少なくとも1つが0とは異なるという証拠をデータが示すかどうかを判断するには、回帰のp値を有意水準と比較して帰無仮説を評価します。回帰のp値の帰無仮説は、回帰モデルに含まれる項の全ての係数が0であるという仮定です。通常は、有意水準(αまたはアルファとも呼ばれる)として0.05が適切です。0.05の有意水準は、実際にはすべての係数は0なのにも関わらず、少なくとも1つの係数は0とは異なると結論付ける可能性が5%であることを示しています。
p値 ≤ α:少なくとも1つの係数が0ではありません
p値が有意水準以下の場合は、少なくとも1つの係数が0ではないと結論します。
p値 > α:少なくとも1つの係数が0ではないと結論付けるだけの十分な証拠がありません
p値が有意水準より大きい場合、少なくとも1つの係数は0ではないと結論付けることはできません。新しいモデルを適合したくなるかもしれません。

p値…項

p値は帰無仮説を棄却するための証拠を測定する確率です。確率が低いほど、帰無仮説を棄却する強力な証拠となります。

解釈

応答変数と予測変数の間の関係が統計的に有意かどうか判断するには、項のp値と有意水準を比較して帰無仮説を評価します。この帰無仮説は、予測変数の係数が0に等しく、予測変数と応答変数に関連性がないという仮定です。通常は、有意水準(αまたはアルファとも呼ばれる)として0.05が適切です。0.05の有意水準は、実際には関連性がない場合でも、関連性が存在すると結論付けてしまうリスクが5%であるということを示します。
p値 ≤ α:関連性は統計的に有意です
p値が有意水準以下の場合は、応答変数と予測変数の間に統計的に有意な関連性が存在すると結論付けることができます。
p値 > α:その関連性は統計的に有意ではありません
p値が有意水準より大きい場合は、応答変数と予測変数の間に統計的に有意な関連性があると結論付けることはできません。
本サイトを使用すると、分析およびコンテンツのカスタマイズのためにクッキーが使用されることに同意したことになります。  当社のプライバシーポリシーをご確認ください