L'effectif de l'échantillon (N) est le nombre d'observations total de l'échantillon.
L'effectif de l'échantillon a une influence sur l'intervalle de confiance et la puissance du test.
En général, plus l'échantillon est grand, plus l'intervalle de confiance est étroit. En outre, un effectif d'échantillon plus grand donne au test plus de puissance pour détecter une différence. Pour plus d'informations, reportez-vous à la rubrique Qu'est-ce que la puissance ?.
La médiane représente le milieu de l'ensemble de données. Ce point de milieu est celui qui sépare les observations en deux moitiés égales, l'une supérieure à la valeur, l'autre inférieure. La médiane est déterminée en classant les observations, puis en prenant l'observation de rang [N + 1] / 2 dans l'ordre obtenu. Si le nombre d'observations est pair, la médiane est égale à la moyenne des observations de rang N/2 et [N/2] + 1.
La médiane de chaque échantillon est une estimation de la médiane de la population de chaque échantillon.
La différence est la différence entre les médianes des deux échantillons.
La différence étant calculée à partir des données d'échantillon et non de l'ensemble de la population, il est peu probable que la différence de l'échantillon soit égale à celle de la population. Pour mieux estimer la différence de la population, utilisez l'intervalle de confiance.
L'intervalle de confiance fournit une étendue de valeurs probables pour la différence de la population. Les échantillons étant aléatoires, il est peu probable que deux échantillons d'une population donnent des intervalles de confiance identiques. Toutefois, si vous répétiez l'échantillonnage de nombreuses fois, un certain pourcentage des intervalles de confiance ou bornes obtenus contiendrait la différence de population inconnue. Le pourcentage de ces intervalles de confiance ou bornes contenant la différence est le niveau de confiance de l'intervalle. Par exemple, un niveau de confiance de 95 % indique que, sur 100 échantillons pris de façon aléatoire parmi la population, environ 95 de ces échantillons devraient produire des intervalles contenant la différence de population.
Une borne supérieure définit une valeur à laquelle la différence de la population est susceptible d'être inférieure. Une borne inférieure définit une valeur à laquelle la différence de la population est susceptible d'être supérieure.
L'intervalle de confiance vous aide à évaluer la signification pratique de vos résultats. Utilisez vos connaissances spécialisées pour déterminer si l'intervalle de confiance comporte des valeurs ayant une signification pratique pour votre situation. Si l'intervalle est trop grand pour être utile, vous devez sans doute augmenter votre effectif d'échantillon.
Différence | IC pour la différence | Confiance atteinte |
---|---|---|
-1,85 | (-3; -0,9) | 95,52% |
Dans ces résultats, l'estimation ponctuelle de la médiane de la population pour la différence du nombre de mois qu'une peinture tient sur deux autoroutes est de −1,85. Vous pouvez être sûr à 95,52 % que la différence entre les médianes de la population est comprise entre −3,0 et −0,9.
La statistique de Mann-Whitney (valeur W) est la somme des rangs du premier échantillon.
Minitab utilise la statistique de Mann-Whitney pour calculer la valeur de p, qui est la probabilité qui mesure le degré de certitude avec lequel il est possible d'invalider l'hypothèse nulle.
Etant donné que l'interprétation de la statistique de Mann-Whitney dépend de l'effectif de l'échantillon, utilisez plutôt la valeur de p pour prendre une décision concernant le test. La valeur de p a la même signification, quel que soit l'effectif de l'échantillon.
La valeur de p est la probabilité qui mesure le degré de certitude avec lequel il est possible d'invalider l'hypothèse nulle. Une valeur de p inférieure fournit des preuves plus solides par rapport à l'hypothèse nulle.
Utilisez la valeur de p pour déterminer si la différence entre des médianes de population est statistiquement significative.
On parle de valeur ex aequo lorsque la même valeur est présente dans plusieurs échantillons. Si vos données contiennent des nombres de même grandeur (valeurs ex aequo), Minitab affiche une valeur de p ajustée pour ces nombres et une autre valeur de p non ajustée. La valeur de p ajustée est généralement plus exacte que la valeur de p non ajustée. Cependant, dans la mesure où cette dernière est toujours supérieure à la valeur de p ajustée pour une paire d'échantillons donnée, la valeur de p non ajustée est l'estimation la plus prudente.