Utilisez la moyenne pour décrire l'échantillon avec une seule valeur qui représente le centre des données. De nombreuses analyses statistiques utilisent la moyenne en tant que mesure standard pour le centre de la loi des données.
La médiane est une autre mesure du centre de la loi. Elle est généralement moins influencée par les valeurs aberrantes que la moyenne. La moitié des valeurs de données est supérieure à la valeur de la médiane, tandis que l'autre moitié des valeurs est inférieure.
L'intervalle de confiance fournit une étendue de valeurs probables pour le paramètre de population. Par exemple, un niveau de confiance de 95 % indique que, sur 100 échantillons pris de façon aléatoire parmi la population, environ 95 de ces échantillons devraient produire des intervalles contenant le paramètre de population.
Utilisez l'histogramme et la boîte à moustaches pour évaluer la forme et la répartition des données, et pour identifier toute éventuelle valeur aberrante.
Lorsque les données sont asymétriques, la majorité d'entre elles sont situées sur le côté supérieur ou inférieur du graphique. En général, l'asymétrie est plus facile à détecter avec un histogramme ou une boîte à moustaches.
Les valeurs aberrantes, qui sont des valeurs de données très éloignées des autres valeurs de données, peuvent avoir une incidence importante sur les résultats de votre analyse. En général, les valeurs aberrantes sont plus faciles à repérer sur une boîte à moustaches.
Essayez de déterminer la cause de toutes les valeurs aberrantes. Corrigez les erreurs de mesure ou d’entrée des données. Supprimez éventuellement les valeurs de données associées à des événements anormaux et uniques (aussi appelés causes spéciales). Ensuite, répétez l'analyse. Pour plus d'informations, reportez-vous à la rubrique Identification des valeurs aberrantes.
Les données multimodales présentent plusieurs pics, également appelés modes. Les données multimodales indiquent souvent que des variables importantes ne sont pas encore représentées.
Si des informations supplémentaires vous permettent de classer les observations en groupes, vous pouvez créer une variable de groupe avec ces informations. Vous pouvez ensuite créer le graphique avec des groupes pour déterminer si la variable de groupe explique les pics dans les données.