Le MSD (écart moyen quadratique), mesure l'exactitude des valeurs ajustées des séries chronologiques. Les valeurs aberrantes ont un effet plus important sur le MSD que sur le MAD.
Utilisez cet outil pour comparer les valeurs ajustées de différents modèles de série chronologique. Plus les valeurs sont faibles, meilleur est l'ajustement.
Les mesures d'exactitude reposent sur les valeurs résiduelles obtenues à partir de la période précédente. A chaque point dans le temps, le modèle est utilisé pour prévoir la valeur Y pour la prochaine période. La différence entre les valeurs prévues (valeurs résiduelles) et la valeur Y réelle est égale aux valeurs résiduelles obtenues à partir de la période précédente. De ce fait, les mesures de l'exactitude fournissent une indication de l'exactitude à attendre lorsque vous effectuez une prévision pour une période à partir de la fin des données. Ainsi, elles n'indiquent pas l'exactitude des prévisions au-delà d'une période. Si vous comptez utiliser le modèle pour effectuer des prévisions, vous ne devez pas vous fier uniquement aux mesures d'exactitude pour prendre une décision. Vous devez également examiner l'ajustement du modèle pour vous assurer qu'il suit étroitement les données, notamment à la fin de la série, et qu'il en est de même pour les prévisions.