Les mesures d'exactitude fournissent une indication de l'exactitude à attendre lorsque vous effectuez une prévision sur une période à partir de la fin des données. Ainsi, elles n'indiquent pas l'exactitude des prévisions au-delà d'une période. Si vous comptez utiliser le modèle pour effectuer des prévisions, vous ne devez pas vous fier uniquement aux mesures d'exactitude pour prendre une décision. Vous devez également examiner l'ajustement du modèle pour vous assurer qu'il suit étroitement les données, notamment à la fin de la série, et qu'il en est de même pour les prévisions.
Modèle 1
MAPE | 7,265 |
---|---|
MAD | 16,621 |
MSD | 518,119 |
Modèle 2
MAPE | 2,474 |
---|---|
MAD | 9,462 |
MSD | 135,701 |
Dans ces résultats, les trois statistiques sont plus faibles pour le 2e modèle que pour le 1er. Par conséquent, le 2e modèle est le mieux ajusté.
La décomposition utilise des indices saisonniers et une ligne de tendance fixes. De ce fait, vous devez uniquement utiliser la décomposition pour effectuer des prévisions quand la tendance et la saisonnalité sont cohérentes. Il est notamment très important de vérifier que les valeurs ajustées correspondent aux valeurs réelles à la fin de la série chronologique. Si le schéma saisonnier ou la tendance ne correspond pas aux valeurs ajustées à la fin des données, utilisez Méthode de Winters.